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Abstract

In this work, we computationally explored the structural, mechanical, electronic,

optical and thermoelectric properties of Ca2VInO6 oxide double provskites using

the full potential linearized augmented plane wave (FP-LAPW) method, based on

density functional theory method, as implemented in the WIEN2k package. The

compound have a perfect cubic symmetry with space group Fm3̄m (space group

no: 225). The mechanical properties show that Ca2VInO6 is ductile in nature. The

analysis of electronic properties reveal that Ca2VInO6 exhibit an indirect bandgap,

with values of 2.362 eV. The optical properties are investigated through the dielec-

tric function, absorption coefficient, optical conductivity, reflectivity and refractive

index. These properties demonstrate a significant response in the ultraviolet and

visible regions, making the material suitable for photocell and optoelectronic de-

vice applications. Finally, thermoelectric properties such as power factor, electrical

conductivity, thermal conductivity, Seebeck coefficient and figure of merit were cal-

culated using BoltzTraP code. At room temperature, the estimated values of the

figure of merit is 0.83 for Ca2VInO6. This value indicate that Ca2VInO6 is a promis-

ing candidate for thermoelectric device applications.
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Chapter 1

Introduction

Energy is a basic component of society which has a key role in its development by up-

grading the standards and quality of human life’s. Nowdays energy crisis is a major

concern of researchers globally because the energy resources are depleting continu-

ously, which is also not sound ecologically. Fossile fuels are the primary resources

of our energy demand but they are non-renewable and limited in supply. According

to some estimations, they will be consumed within the next five decades [1]. The

rapid increase in energy demand has motivated the scientific community to look for

smart and technologically advanced devices which can harvest enegy from natural

sources like the sun, wind and tides [2, 3]. Sun is one of the biggest sources of heat

and light which could be converted into electrical energy using suitable optoelec-

tronic and thermoelectric devices [4]. The efficiency of any such device depends

upon the underlying material in these devices. Double perovskite materials have

the potential to harvest solar energy. In recent years, double perovskite materials

have attracted much attention due to their promising applications in various fields,

such as light-emitting diode (LEDs), lasers, radiation detectors, and solar cells [5–9].

Among different types of double perovskites, lead-based DP materials exhibit ex-

ceptional applications in photovoltaic technologies which are due to their suitable

direct band gap, high absorption properties, high carrier mobility and charge diffu-
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sion, and small effective masses [10–13]. Although lead-based DP possess remarkable

characteristics as mentioned earlier, most of the efficient perovskites explored yet

contain the lead element which is very toxic and badly affects the reproductive and

nervous systems of the human body [14]. Therefore, in recent years, finding stable

and nature-frendly and non-toxic DP materials has been considered as a stategically

important field of study. In this regard, lead-free halides and double perovskites ox-

ides in which lead is replaced by silver (Ag), bismuth (Bi), and so on have attracted

great research interest from theoretical and experimental perspectives. It has been

indicated that the high optical conductivity, low reflectivity, and high absorption

coefficients of this family of materials make them promising materials for use in

many practical applications [15–31].

Double perovskites are represented by the general chemical formula A2BB
′X6 in

which B and B′ represent monovalent (B1+) and trivalent (B3+) cations, respec-

tively. They are named as double perovskites because their unit cell is twich that

of the simple perovskites. Generally, A-site cation belongs to alkali metals (like K,

Cs, Rb etc), B and B′ cations are transition metals ( like Ag, Pd, Pt etc) while X

is halides or oxygen [32]. As the power conversion efficiency has increased steadily

and explosively from 3.8% in 2009 to 25.7% at present [33, 34], oxide-based double

perovskite materials have got dramatic attention in the research community for pho-

tovoltaic and thermoelectric applications. For examples, Kazim et al. [35] have done

the first principle study of wide band gap semiconducting materials Ba2ZrCeO6 and

Ba2ZrTiO6 and have revealed that these materials exhibit optimal optoelectronics

properties for incident light in the UV region and act as high-potential thermo-

electric materials at high temperature. Aziz et al. [36] estimated the properties of

X2NaIO6 (X= Pb,Sr) and revealed that both Sr2NaIO6 and Pb2NaIO6 exhibited

good semiconducting behaviours with direct bandgaps (Eg) of 5.48 and 3.75 eV, re-

spectively. In addition, Sr2NaIO6 acheived a higher ZT value and power factor (PF)

of 0.7728 and 206.3, respectively. In addition, cubic X2NaIO6 was more suitable

in thermoelectric (TE) applications and optoelectronic devices. Al-Qaisi et al. [37]

have investigated elastically stable, anisotropic, and brittle Ba2NaIO6 double per-

ovskite direct and narrow bandgap semiconductor material for optoelectronic and
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thermoelectric materials using DFT approach. Apart from that, Khandy et al. [38]

analyzed the physical characteristics of Ba2CdReO6. The study found that the com-

pound displayed a minimal stability energy curve in the ferromagnetic (FM) setup,

while the half-metallic feature was observed in the band structure. Moreover, the

physical attributes of the material were the major advantages that allowed it to be

widely utilized as an electrode material in spintronics applications.

Motivated by the attractive characteristics of oxide-based double perovskites, we

have used a first-principle approach and density functional theory (DFT) as imple-

mented in WIEN2k [39, 40] code to study the structural, electrical, optical, ther-

moelectric and mechanical properties of Ca2VInO6. Density Functional Theory

(DFT) [41,42] is a computational approach employed in quantum mechanics for char-

acterizing the electronic structure and characteristics of solid materials. WIEN2k

stands out as a versatile and advanced software package designed for electronic struc-

ture calcualtions in the field of materials science. It uses the full-potential linearized

augmented plane wave (FP-LAPW) method. Transport properties were calculated

using the BoltzTraP code [43], where we computed thermal and electrical conduc-

tivities, the Seebeck coefficient and the power factor. BoltzTraP is a program that

computes semiclassical transport coefficients using smoothed Fourier interpolation

of electronic bands.

Chapter 2 presents the fundamental principles of quantum mechanics that serve as

the theoretical foundation for density functional theory (DFT). The chapter begins

with the time-independent Schrödinger equation and discusses the criteria for de-

termining the ground-state wave function. It also includes a brief overview of the

Born–Oppenheimer approximation and the Hartree–Fock method, along with its

limitations. The theoretical framework of DFT is then introduced and discussed

in detail. Chapter 3 explores the structural, electronic, optical, thermoelectric, and

mechanical properties of Ca2VInO6. Finally, in Chapter 4, we summarize the key

findings and highlight the potential applications of the material based on its ana-

lyzed properties.
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Chapter 2

Theory

2.1 Basic Quantum Mechanics

A proper understanding of Density Functional Theory (DFT) begins with the fun-

damental principles of quantum mechanics, which describe the behavior of matter

at atomic and subatomic scales. Central to this theory is the Schrödinger equa-

tion, which governs the quantum states of physical systems and enables the deter-

mination of wave functions and energy levels. The Schrödinger equation can be

expressed in both time-dependent and time-independent forms. We will focus on

the time-independent Schrödinger equation, which is particularly relevant for sta-

tionary states of quantum systems. Solutions to the time-independent Schrödinger

equation provide the probability distribution of particles and the corresponding en-

ergy eigenvalues, offering crucial insights into the electronic structure of atoms and

molecules.

2.1.1 Schrödinger Equation

The Schrödinger equation is a key equation in quantum mechanics that characterizes

the quantum state of a system. It is fundamental for understanding the behavior

of particles at atomic and subatomic levels, such as electrons, photons, and other
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quantum entities [44]. First introduced by Erwin Schrödinger in 1925, the equation

offers a mathematical framework to predict the properties and dynamics of quantum

systems.. The mathematical form of the Schrödinger equation is

ĤΨ = EΨ (2.1)

where, Ĥ is the Hamiltonian operator, Ψ is the wave function of the system, and

E is the energy eigenvalue corresponding to the quantum state described by Ψ.

This equation is crucial in finding the stationary states of quantum systems. The

Hamiltonian, Ĥ , represents the total energy operator of the system and is typically

composed of two parts: the kinetic energy operator, T̂ = − ℏ2
2m

∇2 and the potential

energy operator, V̂ = V (r). The kinetic energy operator describes the motion of

particles, while the potential energy operator accounts for the forces acting on them

due to their positions within the system. Together, these components determine

the total energy of the quantum system. Hence, the Schrödinger equation in three

dimensions becomes

EΨ(r) =

[
− ℏ2

2m
∇2 + V (r)

]
Ψ(r). (2.2)

2.1.2 Wave Functions and Probability Density

The wave function, Ψ(r), is a key concept in quantum mechanics that encodes all

information about a system’s quantum state. It describes the probability of finding

particles at specific positions r and with particular properties. Although Ψ itself does

not have direct physical meaning, it is essential for calculating observable quantities

like energy and determining the probability distribution of particle positions, |Ψ|2,

which provides insights into their behavior within the system [45].

2.2 The Many-Body Problem

The many-body problem in quantum mechanics concerns the difficulty of describing

systems made up of multiple interacting particles. While single-particle systems can
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often be solved analytically, many-body systems involve complex interactions that

lead to phenomena like correlations and collective behaviors. The Hamiltonian for a

many-body system that includes both nuclei and electrons can be expressed as [46].

Ĥ = T̂nuclei + T̂electrons + V̂nn + V̂ee + V̂ne (2.3)

with the terms representing:

• T̂nuclei: the kinetic energy of the nuclei,

• T̂electrons: the kinetic energy of the electrons,

• V̂nn: the nucleus-nucleus Coulomb repulsion,

• V̂ee: the electron-electron Coulomb repulsion,

• V̂ne: the attractive interaction between nuclei and electrons.

These interaction terms make solving the Schrödinger equation for large systems of

atoms exceedingly complex. The Coulomb interactions V̂nn, V̂ee and V̂ne describe the

forces between particles, which must be accounted for when determining the total

energy of the system. As the number of atoms increases, the number of interactions

grows rapidly, making direct analytical or numerical solutions impractical. With

the explicit forms of the kinetic energies and interaction terms, the many-body

Hamiltonian for a system consisting of nuclei and electrons becomes:

Ĥ = −
∑
I

ℏ2

2MI

∇2
RI

−
∑
i

ℏ2

2me

∇2
ri
+
1

2

∑
I,J

ZIZJe
2

|RI −RJ |
+
1

2

∑
i,j

e2

|ri − rj|
−
∑
I,i

ZIe
2

|RI − ri|
.

(2.4)

Here, the indices I and J run over the nuclei, while i and j run over the electrons.

RI and MI are the position and mass of the nuclei, respectively, and ri and me

are the position and mass of the electrons. The terms |RI − RJ |, |RI − ri|, and

|ri−rj| represent the distances between nuclei-nuclei, nuclei-electrons, and electrons-

electrons, respectively. ZI is the atomic number of the I-th nucleus.
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Solving the many-body Hamiltonian presents several significant challenges in quan-

tum mechanics, particularly in systems involving both electrons and nuclei. The

high dimensionality of the problem is a major hurdle; for a system with N electron

and M nuclei, the wave function depends on 3(N + M) variables, making ana-

lytical solutions increasingly intractable as N and M increase. Additionally, the

Coulomb interactions between electrons introduce complex correlations, complicat-

ing the treatment of each electron as an independent particle. Furthermore, since

electrons are fermions, they must adhere to the Pauli exclusion principle, requiring

that the many-body wave function is antisymmetric under the exchange of particles,

which adds another layer of complexity. The potential energy terms in the Hamil-

tonian, which encompass nucleus-nucleus and nucleus-electron interactions, further

contribute to the difficulty. While analytical solutions are only feasible for very

simple systems, such as the hydrogen atom, most many-body systems with multiple

electrons and nuclei do not permit exact solutions.

2.2.1 Born-Oppenheimer Approximation

To manage the complexity associated with solving the many-body Hamiltonian in

systems comprising both electrons and nuclei, it is essential to adopt simplification

strategies. One of the most effective and widely utilized methods is the Born-

Oppenheimer approximation. This approach takes advantage of the substantial

mass difference between nuclei and electrons, which results in a significant disparity

in their respective motion. Since nuclei are much heavier and thus move more slowly

than electrons, their positions can be considered fixed while solving the electronic

part of the Schrödinger equation. This assumption allows for the separation of the

total wave function into independent electronic and nuclear components, thereby

reducing the computational burden and simplifying the many-body problem consid-

erably [47].

Under this approximation, the total Hamiltonian can be expressed as a sum of two

parts: the electronic Hamiltonian Ĥel, which describes the motion of electrons in

the field of fixed nuclei, and the nuclear Hamiltonian Ĥnuc, which accounts for the
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motion of the nuclei interacting with each other. The total Hamiltonian Ĥ is then

given by:

Ĥ = Ĥel + Ĥnuc (2.5)

where

Ĥ = −
∑
i

ℏ2

2me

∇2
ri
+

1

2

∑
i,j

e2

|ri − rj|
−

∑
I,i

ZIe
2

|RI − ri|
. (2.6)

and

Ĥnuc =
∑
I

ℏ2

2MI

∇2
RI

+
1

2

∑
I,J

ZIZJe
2

|RI −RJ |
. (2.7)

The Born-Oppenheimer approximation simplifies the computational complexity of

many-body systems by focusing primarily on the electronic structure. It assumes

that the nuclei, being significantly heavier than the electrons, move much more

slowly and can therefore be treated as stationary. This allows the electrons to

interact within a static potential created by the fixed nuclei. In density functional

theory, this approximation is typically employed to reduce the system’s complexity.

However, if nuclear motion must be included, the Schrödinger equation governing

the nuclei’s behavior can be solved by treating the nuclei as quantum mechanical

objects. The total energy of the system, Etotal, is then obtained by summing the

electronic and nuclear energies, which provides a comprehensive view of the system

by accounting for both electronic and nuclear contributions. Once the electronic

Hamiltonian Ĥel is defined, the electronic Schrödinger equation can be expressed as:

ĤelΨ(r1, r2, ...rN) = EΨ(r1, r2, ...rN) (2.8)

In this equation, Ψ(r1, r2, ..., rN) represents the many-body wave function, depend-

ing on the positions of all N electrons, and E is the total energy. Solving the many-

body Schrödinger equation is challenging due to the complex dependence of Ψ on

all electron coordinates. As N increases, this becomes analytically difficult. Addi-

tionally, capturing electron-electron correlations, especially in systems with strong

interactions, complicates the problem. While the current approximations work for

simple systems like H+
2 , more advanced methods are required for larger systems.
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2.2.2 Hartree-Fock Approximation and Its Limitations

The Hartree-Fock approximation is a key method in quantum chemistry used to

approximate the many-body wave function of a system of electrons [48]. In this

approach, the many-body wave function is represented as a Slater determinant,

which ensures the wave function is antisymmetric in accordance with the Pauli

exclusion principle. The Slater determinant combines single-particle wave functions

(orbitals) for each electron into a single function, ensuring that the overall wave

function changes sign when two electrons are exchanged.

Despite its utility, the Hartree-Fock approximation has notable limitations. One

significant drawback is its reliance on a mean-field approximation, where each elec-

tron moves in an average field created by all other electrons. This assumption

overlooks electron correlation effects, which are crucial for accurately describing

many-electron systems, particularly in cases involving strong correlations. As a re-

sult, the Hartree-Fock method often yields inaccurate results for properties such as

bond lengths, reaction energies, and excitation energies.

Moreover, while the Slater determinant correctly handles the antisymmetry of the

wave function, it fails to capture the dynamic correlation between electrons that

arises from their instantaneous interactions. Additionally, the computational cost

of the Hartree-Fock method scales as O(N4), where N is the number of electrons.

This scaling occurs because the method requires calculating integrals over all pairs of

electron orbitals. As N increases, the number of required calculations grows rapidly,

making the method computationally expensive for larger systems.

2.3 Density Functional Theory

Density Functional Theory (DFT) is a widely used quantum mechanical approach

for studying the electronic structure of many-body systems. Instead of relying on

complex wave functions, DFT uses electron density as the central variable. This

simplification reduces the difficulty of solving the many-body Schrödinger equation.

The fundamental idea is that the electron density alone is sufficient to determine
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all ground-state properties of a system. DFT is efficient and accurate, making it

suitable for exploring large and complex systems. Through the Hohenberg-Kohn

theorems and Kohn-Sham equations, DFT offers a practical and reliable framework

for analyzing the physical, chemical, and material characteristics of matter.

2.3.1 The Electron Density

In Density Functional Theory (DFT), the electron density n(r) serves as the cen-

tral variable for describing a quantum system. The electron density represents the

probability of finding an electron at a particular point in space and can be derived

from the many-body wave function Ψ(r1, r2, ...rN) by integrating over all electron

coordinates. This relationship is expressed mathematically as:

n(r) = N

∫
|Ψ(r1, r2, ...., rN)|2dr2dr3....drN . (2.9)

Additionally, we must remember that all electrons are identical; thus, we cannot

label them as electron 1 or electron N . Instead, we can determine the probability

of any order or set of N electrons being located at the coordinates r1 to rN . While

the wave function contains comprehensive information about the quantum state

of a system, it is the electron density that ultimately determines all measurable

properties. The total number of electrons N in the system can also be calculated

from the electron density using the equation:

N =

∫
n(r)d(r). (2.10)

This integration highlights that the electron density encodes vital information about

the total number of electrons, making it a fundamental aspect of DFT. By focusing

on n(r) instead of the complex multi-dimensional wave function, DFT simplifies

calculations, making it a practical and efficient approach for studying the electronic

structure of various materials.
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2.3.2 Hohenberg-Kohn Theorems

Density Functional Theory (DFT) was formally established in 1964 with the pub-

lication of a seminal paper by Hohenberg and Kohn in Physical Review. In this

foundational work, the authors introduced two key theorems that form the theoret-

ical basis of all modern DFT approaches. These theorems demonstrated that the

ground-state properties of a quantum many-body system are uniquely determined by

its electron density, rather than its many-body wave function. This insight provided

a new framework for studying quantum systems, offering a more computationally ef-

ficient alternative to traditional wave-function-based methods, particularly for large

and complex systems.

The Hohenberg-Kohn theorems are central to the formulation of DFT, and they can

be summarized as follows:

First theorem: The ground-state electron density n(r) uniquely determines the

external potential Vext(r) acting on the electrons. This means that if the electron

density of a system is known, the external potential can be uniquely inferred, allow-

ing for the derivation of all ground-state properties, including the total energy, from

the electron density.

According to the first theorem, the ground-state density and the external potential

correspond in a one-to-one manner. Since the external potential is fixed, the Hamil-

tonian, and hence the wave function ψ, is determined by the ground-state density

n0(r). The proof of this theorem is straightforward: Consider the ground states of

two N -electron systems, characterized by two different external potentials Vext(r)

and V ′
ext(r), which differ by more than an additive constant. The corresponding

Hamiltonians, Ĥ and Ĥ ′, would both have the same ground-state density n(r), but

different ground-state wave functions, Ψ and Ψ′, with ĤΨ = E0Ψ and Ĥ ′Ψ′ = E ′
0Ψ

′.

Since Ψ′ is not the ground state of Ĥ, it follows that
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E0 < ⟨Ψ′|Ĥ|Ψ′⟩

< ⟨Ψ′|Ĥ ′|Ψ′⟩+ ⟨Ψ′|Ĥ − Ĥ ′|Ψ′⟩

< E ′
0 +

∫
n0(r)[Vext(r)− V ′

ext(r)]dr

(2.11)

Similarly

E ′
0 < ⟨Ψ|Ĥ|Ψ⟩

< ⟨Ψ|Ĥ|Ψ⟩+ ⟨Ψ|Ĥ ′ − Ĥ|Ψ⟩

< E0 +

∫
n0(r)[V

′
ext(r)− Vext(r)]dr.

(2.12)

Adding equation (11) and equation (12) leads to the contradiction,

E0 + E ′
0 < E0 + E ′

0 (2.13)

Hence, no two different external potentials Vext(r) can give rise to the same ground

state density n0(r) which determines the external potential Vext(r), except for a con-

stant. That is to say, there is a one-to-one mapping between the ground state density

n0(r) and the external potential Vext(r), although the exact formula is unknown.

Second theorem: For any trial electron density n(r), the energy functional E[n]

will yield a value that is greater than or equal to the ground-state energy E0. The

equality holds when the trial density corresponds to the true ground-state density.

This variational principle implies that one can minimize the energy functional E[n]

with respect to the electron density to find the ground state of a system [49].

There exists a universal functional F [n(r)] of the density, independent of the external

potential Vext(r), such that the minimum value of the energy functional

E[n(r)] ≡
∫
n(r)Vext(r)d(r) + F [n(r)] (2.14)

yields the exact ground-state energy of the system. The exact ground-state density

n0(r) minimizes this functional. Thus, the exact ground-state energy and density
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are fully determined by the functional E[n(r)]. The universal functional F [n(r)] can

be written as:

F [n(r)] ≡ T [n(r)] + Eint[n(r)] (2.15)

where T[n(r)] is the kinetic energy and Eint[n(r)] is the interaction energy of the

particles. According to the variational principle, for any wave function Ψ′, the energy

functional

E[Ψ′] ≡ ⟨Ψ′|T̂ + V̂int + V̂ext|Ψ′⟩ (2.16)

reaches its global minimum only when Ψ′ is the ground-state wave function Ψ0,

with the constraint that the total number of particles is conserved. According to

the first Hohenberg-Kohn theorem, Ψ′ must correspond to a ground state with

particle density n′(r) and external potential Vext(r), making E[Ψ′] a functional of

n′(r). Applying the variational principle:

E[Ψ′] =

∫
n′(r)V ′

ext(r)d(r)+F [n
′(r)] > E[Ψ0] =

∫
n0(r)Vext(r)d(r)+F [n0(r)] = E[n0(r)]

(2.17)

Thus, the energy functional E[Ψ] ≡
∫
n(r)Vext(r)d(r) + F [n(r)] evaluated for the

correct ground-state density n0(r) is lower than the value of this functional for any

other density n(r). Therefore, by minimizing the total energy functional of the

system with respect to variations in the density n(r), one can find the exact ground-

state density and energy. This functional, however, only determines ground-state

properties and does not provide any insight into excited states.

2.3.3 Advantage and Disadvantage of Hohenberg-Kohn The-

orems

The Hohenberg-Kohn theorems form the theoretical foundation of Density Func-

tional Theory (DFT) and play a crucial role in computational chemistry and ma-

terials science. These theorems provide a significant advantage by establishing a

direct relationship between the ground-state properties of many-electron systems

and their electron density, thereby offering a more tractable alternative to tradi-

tional wave function-based approaches.
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The first theorem demonstrates that a one-to-one correspondence exists between the

ground-state electron density and the external potential acting on the system. This

implies that all properties of the ground state can be described as functionals of the

electron density. The second theorem introduces a variational principle, stating that

the correct ground-state electron density minimizes the total energy functional [50].

This significantly reduces the complexity of quantum mechanical calculations by

shifting focus from a 3N -dimensional wave function to a three-dimensional electron

density.

However, the Hohenberg-Kohn theorems also come with notable disadvantages.

They are limited to ground-state properties, providing no direct insight into ex-

cited states, which poses challenges in studying electronic excitations and charge

transfer processes. The effectiveness of DFT is highly dependent on the choice of

exchange-correlation functional, which may not accurately capture all correlation

effects, especially in systems with strong electron-electron interactions. Further-

more, while DFT is generally computationally less intensive than wave-function

methods, the calculations of exchange-correlation energies can still be demanding.

The reliance on external potentials and the interpretation challenges associated with

electron density further highlight the limitations of the Hohenberg-Kohn theorems,

necessitating careful consideration when applying DFT to complex systems.

2.3.4 Kohn-Sham Equation: Reformulating Many-Body Prob-

lems

The Kohn-Sham equation is a fundamental aspect of Density Functional Theory

(DFT) that enables efficient calculations of electronic structures in many-body sys-

tems. Building on the Hohenberg-Kohn theorems, it establishes a relationship be-

tween the ground-state electron density and the external potential. The Kohn-Sham

approach simplifies the many-body problem by mapping the interacting electron

system onto an auxiliary system of non-interacting electrons that yield the same

electron density.

In the Kohn-Sham approach, the true interacting electron system is mapped onto
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an auxiliary system of non-interacting electrons that yield the same electron density

as the original system. This is achieved through the Kohn-Sham equations, which

can be expressed as:

[
− ℏ2

2m
∇2 + Veff (r)

]
ψi(r) = ϵiψi(r), (2.18)

where Veff (r) is the effective potential that includes the external potential and the

exchange-correlation potential. The Kohn-Sham orbitals ψi(r) are used to construct

the electron density n(r) as:

n(r) =
N∑
i

|ψi(r)|2. (2.19)

This approach significantly reduces the complexity of solving the many-body Schrödinger

equation by allowing for the treatment of a system of independent particles, while

still capturing the essential effects of electron correlation through the exchange-

correlation functional.

The effective potential in the Kohn-Sham framework can be expressed as:

Veff = Vext + VHartree[n(r)] + Vxc[n(r)] (2.20)

Here, Vext represents the external potential acting on the electrons in the system.

This potential typically arises from the interaction between the electrons and fixed

nuclei or any other external fields applied to the system. In many cases, Vext is

described by the Coulomb potential due to the nuclei, reflecting how electrons expe-

rience attraction towards positively charged atomic cores. This term plays a crucial

role in determining the overall potential landscape in which the electrons move,

significantly influencing the electronic structure of the system.

The term VHartree[n(r)] is the Hartree potential, which describes the classical elec-

trostatic interaction between electrons in a many-body system. It accounts for the

repulsion between charged particles, reflecting that the potential energy experienced
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by an electron is due to the distribution of other electrons around it. The Hartree

potential is calculated as:

VHartree[n(r)] =

∫
n(r)

|r− r′|
dr′. (2.21)

This formulation integrates the electron density n(r)′ over all space, considering the

effect of all other electrons on a given electron located at r. This approach provides

a mean-field treatment of electron-electron repulsion, avoiding the complexity of

considering every pair of interactions explicitly.

The exchange-correlation potential Vxc[n(r)] represents the quantum mechanical ef-

fects of exchange and correlation among electrons. It is defined as:

Vxc[n(r)] =
δExc[n]

δn
. (2.22)

The exchange term arises from the antisymmetry requirement of the total wave

function for fermions, accounting for the reduction in energy when two electrons are

spatially separated. The correlation term reflects the correlated motion of electrons

that cannot be captured by a mean-field approach, accounting for the ways in which

the presence of one electron affects the probability distribution of another electron’s

position and momentum.

From these considerations, the Kohn-Sham Hamiltonian can be formulated as:

ĤKS = − ℏ2

2m
∇2 + Vext + VHartree[n(r)] + Vxc[n(r)]. (2.23)

The major distinction between the Kohn-Sham formulation and the Hartree formu-

lation lies in the inclusion of both exchange and correlation effects in the effective

potential, providing a more accurate description of many-body systems.

Solving the Kohn-Sham equation is a crucial step in density functional theory for

obtaining the ground-state electron density of a many-body system. In a condensed

matter system, the Kohn-Sham equation [51] provides a method to derive the exact

density and energy of the ground state. The process begins with an initial electron
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density n(r), typically a superposition of atomic electron densities. The effective

Kohn-Sham potential Veff is then calculated, and the Kohn-Sham equation is solved

to obtain single-particle eigenvalues and wave functions. A new electron density is

subsequently calculated from these wave functions.

The iterative process is generally performed numerically through self-consistent it-

erations, as shown in Figure 2.1 (flowchart). Self-consistency is determined by mon-

itoring changes in total energy, electron density from the previous iteration, or the

total force acting on the atoms, ensuring that these quantities fall below a specified

threshold. A combination of these criteria may also be used. If self-consistency

is not achieved, the electron density from the previous iteration is mixed with the

current density, and the process is repeated until convergence is reached. Once the

system reaches self-consistency, various properties can be calculated, such as total

energy, forces, stress, eigenvalues, electron density of states, and band structure.

Figure 2.1: Flowchart illustrating the iterative process for solving the Kohn-Sham equa-

tion in density functional theory to obtain the ground-state electron density and associated

properties of a many body system.
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2.3.5 The Role and Calculation of Exchange-Correlation

In density functional theory, the exchange-correlation potential, Vxc[n(r)], is a crit-

ical component that captures the complex quantum mechanical effects of electron

exchange and correlation. However, Vxc is not derived exactly but is instead ap-

proximated due to the computational challenges of dealing with many-electron sys-

tems. One of the most common approximations is the Local Density Approximation

(LDA), where Vxc is considered to depend solely on the local electron density. This

approximation is based on the idea that in regions where the electron density is

nearly uniform, the behavior of electrons can be likened to that of a homogeneous

electron gas. While simple, LDA can perform reasonably well for certain materials,

especially solids with nearly uniform electron densities.

To improve upon the LDA, the Generalized Gradient Approximation (GGA) intro-

duces a dependence on the spatial gradients of the electron density. By including

information about how the density changes in space, GGA provides more accurate

results for systems where the density varies significantly, such as in molecules or sur-

faces. These improvements make GGA one of the most widely used approximations

in modern DFT calculations. More advanced methods, such as hybrid function-

als, combine the exchange from exact Hartree-Fock theory with the approximate

exchange-correlation from LDA or GGA. Hybrid functionals, like B3LY P , tend to

improve accuracy further, particularly for molecular systems, by including a portion

of exact exchange, which LDA and GGA inherently miss.

In practice, the calculation of Vxc is an iterative process within the self-consistent

field (SCF) method. The DFT algorithm begins with an initial guess for the elec-

tron density, usually based on atomic configurations. Using this initial density,

the Kohn-Sham equations are solved to update the potential and electron density.

The exchange-correlation potential, Vxc, is recalculated at each step based on the

updated density. This process continues until the electron density converges to a

self-consistent solution, meaning that the input and output densities agree within a

set tolerance. Recent developments also include meta-GGA functionals, which in-

corporate even higher-order density-related terms, such as the kinetic energy density,
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to account for more complex interactions. While computationally more expensive,

these functionals can offer improved accuracy for systems with intricate electronic

structures. Thus, although Vxc is not known exactly, various approximations—from

LDA and GGA to hybrid and meta-GGA functionals—allow DFT to achieve a good

balance between accuracy and computational efficiency for a wide range of materials

and molecular systems.
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Chapter 3

Results and Discussion

In order to explore the multifunctional behavior of the Ca2VInO6 double perovskite

compound, a series of computational tools were employed to investigate its key phys-

ical properties include structural properties, electronic band characteristics, optical

response, mechanical strength, and thermoelectric performance. Each property of-

fers essential information regarding the compound’s potential for diverse industrial

and technological applications. The properties have been systematically examined

using density functional theory (DFT) based calculations. We first provide a de-

tailed description of the computational tools employed in this study and then discuss

the results obtained using these tools.

3.1 Computational methods

The structural, electronic, optical, thermoelectric and mechanical properties of the

Ca2VInO6 double perovskite are studied using the full potential linearized aug-

mented plane wave (FP–LAPW) method, based on density functional theory method,

as implemented in the WIEN2k package. To find the optimized ground states

of the considered materials, the generalized gradient approximation (GGA) with

the Perdew–Burke–Ernzerhof (PBE) approximation was used. However, since the
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PBE–GGA method underestimates the electronic bandgap, the Tran–Blaha mod-

ified Becke–Johnson (TB–mBJ) potential was employed to achieve more accurate

bandgap values, which are crucial for correctly describing the electronic and opti-

cal properties of semiconductors. The density of states and optical properties were

calculated using the TB–mBJ potential. The basic functions are expended into

spherical harmonic function inside the muffin-tin sphere and Furier series in the in-

terstitial region. The value of RKmax was set to 8, where Kmax is the plane wave

cut-off and RMT is the smallest of all atomic sphere radii. We also assigned the

value of Gaussian factor Gmax as 16 Ry
1
2 , and angular momentum vector lmax as 10.

The energy convergence criteria was set to 10−5 Ry, while the charge convergence

criteria was also set to 10−4 e, where e is an electron charge and the number of

k–points in the Brillouin zone is 3500. Elastic constants and other parameters are

utilized in the IRelast suite established by Murtaza for the computation of elastic

properties. Finally, the Boltzmann transport equation was utilized to estimate the

thermoelectric properties following the semi–classical Boltzmann transport model,

as applied in BolzTraP code within the constant relaxation time approximation.

3.2 Structural properties

The double perovskite compound Ca2VInO6 adopts a face-centered cubic structure,

belonging to the space group Fm3̄m (space group no: 225), with four atoms per

unit cell. The conventional unit cell of Ca2VInO6 double perovskite is displayed in

Figure 3.1. The atoms in unit cell are located as Ca at 8c(0.25, 0.25, 0.25), V at

4a(0.5, 0.5, 0.5), In at 4b(0, 0, 0) and O at 24e(0.26517, 0, 0) Wyckoff positions. In

order to determine the optimized ground states of the double perovskite compound,

the energy vs volume of a unit cell of the crystal was calculated based on the Birch-

Murnaghan equation of states [52] which can be represented as

E(V ) = E0 +
9V0B0

10


[(

V0
V

)2/3

− 1

]3

B′
0 +

[(
V0
V

)2/3

− 1

]2 [
6− 4

(
V0
V

)2/3
]
(3.1)
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In this equation, V0 and V are the ground state unit cell volume and deformed unit

cell volume, E0 is the energy of the ground state, B0 is the bulk modulus, and B′
0 is

its derivative. The energy vs volume optimization curve also shown in Figure 3.1,

determines the ground state energy corresponding to minimum volume and from

which optimized lattice constant are obtained. The optimized lattice constant are
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Figure 3.1: (a) Crystal structure and (b) The energy vs volume optimization curve of

Ca2VInO6 double perovskite.

estimated to be 7.95 Å. The calculated minimum energy and corresponding volume

are -17290.7684 Ry and 125.85 Å3 respectively. we determined the optimized lattice

constant for the primitive unit cell, generated the crystal structure and evaluated

the total energy for the conventional unit cell.

The stability of our compound is demonstrated with tolerance factor (τ), which is

defined by the following equation;

τ =
RCa +RO√

2
(
RV +RIn

2
+RO

)
Where RCa , RV , RIn and RO refer to the ionic radii of Ca, V, In, O atoms re-

spectively [53,54]. Statistical studies on the double perovskite structures conducted

by Li et al. [55, 56], have revealed that for a stable double perovskite, the tolerance

factor τ lies within the range 0.71 < τ < 1.00. By using the reported ionic radii of

Ca (1Å), V (0.5Å), In (0.8Å), O (1.4Å), the tolerance factor (τ) is calculated to be

approximately 0.84, confirming that this compound forms a stable structure.
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3.3 Electronic properties

Electronic properties of solids are very important and fundamental because of their

influence on optical and thermoelectric properties. To explore the potential area for

practical applications of the studied compounds, it is crucial to examine their band

structure and density of states. To calculate the density of states and band struc-

ture, we employ the TB–mBJ potential, which provides a more accurate band gap

compared to the PBE–GGA approximation. This is because TB–mBJ introduces a

semi-local exchange potential that more effectively captures electron localization and

mimics non-local exchange effects. As a result, it corrects the typical underestima-

tion of band gaps commonly observed in standard DFT calculations. The band gap

calculated with the PBE–GGA approximation is 0.836 eV, while the value obtained

using the TB–mBJ approximation is 2.362 eV. We also calculated electron density

for observing the bonding properties of Ca2VInO6. The electronic band structure,

density of states and electron density are discussed in this section.

3.3.1 Band structure

The analysis of the electronic band structure leads to an understanding of the phys-

ical properties of crystalline solids, which almost completely describe both the op-

tical and transport properties. In particular, one can categorize a solid into metal,

semimetal, semiconductor or insulator by knowing band gap. The electronic band

structure of Ca2VInO6 are presented in Figure 3.2, shifted along the high symmetry

path W–L–Γ–X–W–K. The black horizontal dashed line at 0 eV indicates the Fermi

level (denoted by EF ), with multiple colored lines representing the valence band

(VB) and conduction band (CB) shown below and above EF respectively. This

study illustrates the band structure around the EF ranging from -2 eV to +7 eV.

According to the band structure diagram, this compound has an indirect bandgap

at Γ–X because the bands lie at different symmetry points, such as the valance band

maximum (VBM) at Γ–point and the conduction band minimum (CBM) at X–point

with values of 2.362 eV. In the band structure valance band is closer to the Fermi

level than the conduction band, which indicates that Ca2VInO6 exhibits p − type
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semiconducting behavior.
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Figure 3.2: The calculated band structure of of Ca2VInO6 double perovskite.

3.3.2 Density of states

The density of states (DOS) represents the number of available states at a partic-

ular energy level that electrons can occupy, or the number of electron states per

unit volume per unit energy. We can clarify the electronic structure by analyzing

the elemental and orbital contribution from the constituent element in terms of

DOS and PDOS. The calculated total and partial densities of states for Ca2VInO6

are displayed in Figure 3.3 and 3.4 respectively. The black vertical dashed line at

0 eV represents the Fermi level energy (EF ), while the bands formed by multiple

colored lines to the left and right of EF correspond to the valence band (VB) and

conduction band (CB), respectively. From the band structure, the estimated band

gap is approximately 2.362 eV, indicating that the compound exhibits semiconduct-

ing behavior. As illustrated in Figure 3.3, the total density of states (DOS) shows
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slightly larger peaks in the valence band region compared to the conduction band

region. This suggests that most electrons remain localized and are not free from

their respective atoms. Furthermore, the contribution of electrons from O atoms to

the valence band is significantly higher than that from other atoms. In contrast,

electrons from v atoms contribute more prominently to the conduction band com-

pared to electrons from the other atoms. We considered the contributions of the s,
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Figure 3.3: Density of states of Ca2VInO6 double perovskite.

p, and d orbitals for the Ca atom, the s, p, d, and f orbitals for the V and In atoms,

and the s and p orbitals for the O atom. Although the overall contribution from Ca

atoms is very small, Figure 3.4(a) indicates that the contribution of Ca electrons to

the valence band region is greater than to the conduction band region, with notable

involvement of the s, p and d orbitals. From Figure 3.4(b), we observe a highest peak

is located in the conduction band, with significant peak also present in the valance

band region. In the valence band, the d orbital electrons contribute most, followed

by p orbital electrons. In the conduction band, however, only the d orbital electrons

contribute. Figure 3.4(c) shows that most of the electrons of the In atom are in the

valence band region, with the d orbital making the largest contribution, followed

by the p, f , and s orbitals. Moreover, the sharpest peaks for the p and d orbital

electrons appear far from the Fermi energy level. In contrast, the contribution of s

orbital electrons to the conduction band is more significant than that of the other
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Figure 3.4: Partial density of states of (a) Ca, (b) V, (c) In and (d) O atoms for Ca2VInO6

double perovskite.

orbitals. Now, let’s examine Figure 3.4(d) , it is evident that the electrons from the

oxygen O atoms are predominantly found in the valence band, with relatively few

occupying the conduction band. Additionally, the electron concentration in the p

orbitals is noticeably higher than in the s orbitals.

3.3.3 Electron density

Electron density refers to the concentration or probability of finding an electron in a

specific region of space, typically around an atom or molecule. Electron density and

its distribution plot can be used to determine the bonding properties of compounds.

Figure 3.5 illustrates the charge density along the crystallographic planes (100) and

(110) for Ca2VInO6 , which helps in understanding the types of chemical bonding

present within this double perovskite compound. Figure 3.5 reveals that along the

(100) plane, the charge density distributions of Indium and Oxygen atoms exhibit

no noticeable overlap, indicating the formation of an ionic bond between them. The

clear separation of electron clouds suggests that In atom donates electrons to O atom,
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leading to the development of In3+ and O2− ions. This electron transfer mechanism,

rather than electron sharing, confirms the ionic nature of the In—O bond. On the

other hand, the charge distributions of V and O atoms slightly overlap along the

(110) plane, indicating the presence of a covalent bond between these two atoms.

Figure 3.5: The charge density plots of Ca2VInO6 along (100) and (110) plane.

The observed overlap in electron density suggests that electrons are shared between

V and O atoms, confirming the covalent character of the V—O bond.

3.4 Optical properties

The term optical property describes a material’s behavior when electromagnetic

radiation (light) is incident on the material’s surface or, in other words, how a

material interacts under an incident electromagnetic radiation. The optical behavior

is vital for understanding the internal electronic structure of a substance, which in

turn enables its effective use in photovoltaic applications, such as solar cells. We

performed a detailed calculation of the different optical functions, such as dielectric

function, absorption coefficient, optical conductivity, reflectivity and refractive index

of Ca2VInO6 double perovskite in order to determine the optimum properties for

solar cell devices, as well as other optoelectronic applications. All optical parameters

calculated for Ca2VInO6 are plotted against energy ranging 0–12 eV.
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3.4.1 Dielectric function

The optical nature of any material is explained by the complex dielectric function

ϵ(ω) which describes the relationship between a material’s response to incident pho-

tons and its energy and is given by Ehrenreich and Cohen’s equation of state as

follows:

ϵ(ω) = ϵ1(ω) + iϵ2(ω)

Here, ω denotes the angular frequency of electromagnetic radiation incident on

the specimen. ϵ1(ω) and ϵ2(ω) represent the real and imaginary component of the

dielectric function ϵ(ω). The real part of the dielectric function ϵ1(ω) describes

the degree of polarization a material undergoes when exposed to electromagnetic

radiation, while the imaginary part ϵ2(ω) reflects the material’s light absorption

characteristics. The imaginary part ϵ2(ω) of the dielectric function’s is given as

follows [57]:

ε2(ω) =
e2ℏ

πm2ω2

∑
v,c

∫
BZ

|Mcv(k)|2 δ (ωcv(k)− ω) d3k (3.2)

where k represent the principal quantum number . The ℏ is the Planck constant,

ω is the angular frequency, and M is the molar mass of the carriers. The real part

ϵ1(ω) can be determined by using the Kramers-Kronig equation [57]:

ε1(ω) = 1 +
2

π
P

∫ ∞

0

ω′ε2(ω
′)

ω′2 − ω2
dω′ (3.3)

Here P represent the principal quantum number. The variation of the real dielectric

function ϵ1(ω) of Ca2VInO6 with the energy of the incident radiation is shown in

Figure 3.6(a). The real dielectric constant of the compound is given by its static

value i.e, ϵ1(0) and found to be 4.20, indicating its strong response to electromag-

netic radiation. From, Figure 3.6(a) it is also evident that ϵ1(ω) initially increases

gradually with energy then, reaching a maximum value at 2.60 eV. After this, it

decreases before reaching another peak at 4.67 eV. The peak values of ϵ1(ω) suggest

that the compound is particularly relevant in the visible range of electromagnetic
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radiation. As a result, ϵ1(ω) turn negative in the range of energy about 7-11 eV,

so these compound exhibit metallic behavior at these energy ranges, otherwise, it

is semiconductor. Figure 3.6(b) illustrates the variation of ϵ2(ω) with the energy of

incident radiation, representing the radiation absorbed by the compound. The peak
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Figure 3.6: (a) Real and (b) Imaginary part of the dielectric function of Ca2VInO6

double perovskite.

in this curve corresponds to the transition between the maximum of the valance

band and minimum of the conduction band.

3.4.2 Absorption coefficient

The absorption coefficient of a compound describes the amount of incident radiation

absorbed per unit thickness. It demonstrates the efficiency of solar power conver-

sion and indicates how far energy can penetrate into the compound before being

absorbed. The absorption coefficient can be represented by the dielectric constant

using the equation:

α(ω) =

√
2ω

c

{
ε21(ω) + ε22(ω)− ε1(ω)

} 1
2 (3.4)

Figure 3.7 illustrates the variation of the absorption coefficient of Ca2VInO6 with

the energy of incident radiation. The absorption process starts at a threshold energy

of 2.35 eV, which is almost identical to the material’s electronic bandgap. Below this

threshold energy, the material remains transparent, as no absorption takes place.

Visible light has a wavelength range of approximately 400 to 700 nanometers, which
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corresponds to photon energies of about 1.8 to 3 eV. The absorption coefficient in

the visible energy range is very low, meaning it cannot absorb visible light. How-

ever beyond this range, absorption increases, indicating a preference for absorbing

ultraviolet light.
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Figure 3.7: The absorption coefficient of Ca2VInO6 double perovskite.

3.4.3 Optical conductivity

Optical conductivity refers to the ability of a material to conduct electric current

when exposed to an oscillating electric field, such as that produced by light or

electromagnetic radiation. The optical conductivity exhibits features similar to the

absorption spectra, as presented in Figure 3.7, because free carriers (electrons) are

excited from the valence band to the conduction band when the material absorbs

energy. The optical conductivity can be computed by the following equation,

σ(ω) =
ω

4π
ε2(ω) (3.5)

The graphical representation of optical conductivity of Ca2VInO6 as a function of

energy is shown in Figure 3.8. The figure demonstrates that the conductivity of the

compound starts to increase once the energy exceeds the band-gap energy. This en-

ables the material to excite electrons from the valence band (VB) to the conduction
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band (CB) when it absorbs this level of energy. As a result, the conduction band

gains free electrons, which facilitates electrical conductivity. The material exhibits

the highest conductivity at an energy of 7.2 eV. However, after reaching 8 eV, the

conductivity begins to decrease.
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Figure 3.8: The optical conductivity of Ca2VInO6 double perovskite.

3.4.4 Optical reflectivity

Optical reflectivity is a measure of how much light is reflected from the surface of a

material with an amount of light incident on the material. When light falls on a ma-

terial results in simultaneous absorption, reflection, and transmission. For studying

the reflected light from the surface, reflection coefficient R(ω) can be calculated by

the equation,

R(ω) =
[n(ω)− 1]2 + k2(ω)

[n(ω) + 1]2 + k2(ω)
(3.6)

Here, n denotes the real part of the refractive index, while k represents the imagi-

nary part of the refractive index. Figure 3.9 demonstrates the variation in R(ω) of

Ca2VInO6 with incident radiation energy. The Figure shows that the material re-

mains transparent below the band-gap energy. Once the energy surpasses the band-

gap threshold, the optical reflectivity increases with energy and reaches a peak value

at 9.1 eV in the ultraviolet region. Beyond 10 eV, the reflectivity sharply decreases,
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indicating reduced reflection and a possible increase in absorption or transparenmcy

at very high photon energy.
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Figure 3.9: The optical reflectivity of Ca2VInO6 double perovskite.

3.4.5 Refractive index

The refractive index describes how much light bends and slows down when passing

through a material. Higher refractive indices indicate more significant bending and

slower light speeds. The refractive index and the band gap are inversly related as the

refractive index rises, the bandgap falls and vice-versa. The relationship between

the refractive index n(ω) as a function of frequency and the dielectric constant can

be expressed by the equation,

n(ω) =
1√
2

[(
ε21(ω) + ε22(ω)

) 1
2 + ε1(ω)

] 1
2

(3.7)

The refractive index vs energy curve is illustrated in Figure 3.10. From this Figure,

it can be seen that in the lower energy range, there are higher values of refractive

index for the compound. The refractive index increases with the increase in energy

and reaches its maximum value of about n = 2.85 at the energy of E = 3 eV . After

8 eV the refractive index is continuously decreasing but never becomes negative.
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Figure 3.10: Refractive index of Ca2VInO6 double perovskite.

3.5 Thermoelectric properties

Thermoelectric materials have unique property of converting waste heat into elec-

trical energy and vice versa. We have explored the thermoelectric properties of

Ca2VInO6 double perovskite using the BoltzTrap code. Thermoelectric parameters,

including Seebeck coefficient (S), figure of merit (ZT = S2σT/κ ), power factor (PF

= σS2/τ ), electrical conductivity (σ/τ) and thermal conductivity (κe/τ), were cal-

culated as a function of temperature ranging from 100K to 1000K were calculated.

Here, τ indicates relaxation time having a constant value 10−14s. The Seebeck coef-

ficient (S) is defined as the ratio of the voltage produced (∇V ) to the temperature

gradient (∇T ), which can be expressed mathematically as S = ∇V /∇T . Seebeck

coefficient (S) plotted against temperature as shown in Figure 3.11(a). The See-

beck coefficient decreases as carrier concentration increases, as demonstrated by the

formula below [58,59].

S =
8π2k2B
3eh2

( π

3n

) 2
3
m∗T

Where, kB is the Boltzmann constant, e is the charge of an electron, h is Planck’s

constant, n is the carrier concentration, m∗ is the effective mass of the charge car-

riers, and T is the temperature. At room temperature, the Seebeck coefficient is

recorded as 310 µV K−1. The reduction in the value of S with temperature is due

to annulment of induced Seebeck voltage because of the drift of charge carriers.

33



Results and Discussion

 220

 240

 260

 280

 300

 320

 340

 360

 380

 400

 420

 100  200  300  400  500  600  700  800  900  1000

S
 (

µ
V

/K
)

Temperature

(a)

 0

 0.5

 1

 1.5

 2

 100  200  300  400  500  600  700  800  900  1000

σ
/τ

  
(1

0
1
9
/Ω

.m
.s

)

Temperature

(b)

 0

 2

 4

 6

 8

 10

 12

 14

 100  200  300  400  500  600  700  800  900  1000

κ
e/

τ
  
(1

0
1

4
 W

/m
.K

.s
)

Temperature

(c)

 0

 2

 4

 6

 8

 10

 100  200  300  400  500  600  700  800  900  1000

σ
S

2
/τ

  
(1

0
1
1
W

/m
.K

2
.s

)

Temperature

(d)

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 100  200  300  400  500  600  700  800  900  1000

F
ig

u
re

 o
f 

M
er

it
 (

Z
T

)

Temperature

(e)

Figure 3.11: Thermoelectric properties as (a) Seebeck coefficient (S), (b) Electrical

conductivity (σ/τ), (c) Thermal conductivity (κe/τ), (d) Power factor (σS2/τ ) and (e)

Figure of merit (ZT) of Ca2VInO6 double perovskite.

The positive value of S for Ca2VInO6 suggests that positive charge carriers are

the majority charge carriers in the material, confirming its p–type semiconducting

behavior. The mobility of charge carriers is determined from the electrical con-

ductivity. The electrical conductivity as a function of temperature is displayed in

Figure 3.11(b). The calcualted results reveal a linear increase in σ/τ with increas-

ing temperature. This also implies a decrease in electrical resistivity with rising

temperature, indicating a negative temperature coefficient of resistivity, which sup-

ports the semiconductor nature of the studied compound. Thermal conductivity is
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a key factor in determining the thermoelectric performance of a material, as it gov-

erns the heat transport mechanisms contributed by both electrons and phonons. In

the BoltzTraP code, the contribution of phonons to thermal conductivity is consid-

ered negligible. Therefore, Figure 3.11(c) presents the material’s electronic thermal

conductivity (κe/τ) as a function of temperature. This Figure shows that as tem-

perature increases, the ability of the compound to conduct heat through electrons

improves significantly, making it highly suitable for high temperature electronic ap-

plication. The performance of thermoelectric material is also analyzed by power

factor. The temperature–dependent variation of PF is shown in Figure 3.11(d).

Power factor increases with an increase of temperature, which demonstrates the

suitability of this studied compound for high temperature application. Most im-

portant among the thermoelectric parameters is the figure of merit (ZT). Figure of

merit (ZT), a dimensionless quantity, is a measure of the conversion efficiency of

thermoelectric material. The thermoelectric material having ZT closer or equal to

one are accepted as appropriate material or thermoelectric device application. It

can be noted from Figure 3.11(e) that the value of ZT decreases as the temperature

increases. As observed at high temepratures, the bandgap reduces, so the value of

ZT is also reduced. The highest value of ZT are observed as 0.89 at 100K which is

closer to unity make this studied compound very attractive for thermoelectric device

application.

3.6 Mechanical properties

The mechanical performance of the investigated compound was evaluated by cal-

culating its elastic parameters. Since Ca2VInO6 has a cubic crystalline structure,

only the elastic constants C11, C12 and C44 are necessary to analyze its mechanical

properties. The mechanical stability of a crystal is determined by its elastic con-

stants, following the Born criteria, which can be expressed as follows: C11 - C12 >

0, C11 > 0, C44 > 0, C11 + 2C12 > 0, C12 < B < C11. Here, C11 represents the

longitudinal elastic constant, which describes elasticity along the axis, while C12 and

C44 are shear elastic constants, characterizing elasticity in shear deformation. Table
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3.1 shows that Ca2VInO6 is mechanically stable as satisfies the above Born stability

criteria. Cauchy pressure indicates whether a compound is brittle or ductile. A neg-

ative value suggests brittleness, while a positive value indicates ductility. As shown

in Table 3.1, the positive Cauchy pressure for Ca2VInO6 confirms its ductile nature.

The mechanical properties, including the Bulk modulus (B), Shear modulus (G),

C11 C12 C44 C12 - C44 B G Y A B/G ν

259.80 95.39 81.86 13.53 150.19 81.99 208.12 0.99 1.83 0.27

Table 3.1: The computed values of elastic constant C11, C12, C44, Cauchy’s pressure,

Bulk modulus (B), Shear modulus (G), Young’s modulus (Y ), Anisotrophy factor (A),

Pugh ratio (B/G) and Poisson’s ratio (ν) of Ca2VInO6.

Young’s modulus (Y ), Pugh’s ratio (B/G), Poisson’s ratio (ν), as well as Anisotro-

phy factor (A) of the cubic Ca2VInO6 double perovskite have been determined from

the estimated elastic constants and are presented in Table 3.1. The bulk and shear

moduli that can forecast the hardness of material can be found using the Viogt-

Reuss-Hill averaging scheme approach [60]. The Viogt limits of the bulk modulus

(B) and shear modulus (G) for the cubic system are as follows:

Bv =
C11 + 2C12

3
(3.8)

Gv =
C11 − C12 + 3C44

5
(3.9)

However, the Reuss formulae for the bulk and shear moduli are:

Bv = BR (3.10)

GR =
5(C11 − C12)C44

4C44 + 3(C11 − C12)
(3.11)

Using Hill’s average approximation the bulk and shear moduli are defined as;

B =
Bv +BR

2
(3.12)

G =
Gv +GR

2
(3.13)
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Young’s modulus, determines the strength of material is ratio of linear stress and

strain can be evaluated via relation.

Y =
9BG

3B +G
(3.14)

Pugh’s ratio is a key indicator of a material’s ductile or brittle nature. According to

the Pugh’s criterion, if B/G > 1.75, the material is considered as a ductile material;

otherwise, it is brittle. For Ca2VInO6, the calculated ratio is 1.83, which points to its

ductile nature. Poisson’s ratio index (ν) also helps to assess ductility or brittleness.

A critical Poisson’s ratio value of 0.26 distinguishes ductile from brittle materials.

If ν is greater than 0.26, the material is ductile; otherwise, it is brittle. The studied

material exhibits ductile behavior with a ν value of 0.27. Anisotropy is a crucial

factor that describes a material’s directional properties. It can be calculated by the

relation;

A =
2C44

C11 − C12

(3.15)

Whether a material is isotropic or anisotropic is determined by its anisotropy factor

(A). When A is greater than 1, it indicates significant anisotropy, with varying

stiffness in different crystallographic directions. If A is less than 1, the material is

still anisotropic, but the elastic stiffness varies differently with direction. An A value

of 1 represents a perfectly isotropic material. Ca2VInO6 is identified as an isotropic

double perovskite compound, as its anisotropy factor of 0.99 is nearly equal to 1.

37



Chapter 4

Summery

The structural, elastic, electronic, optical and thermoelectric properties of Ca2VInO6

double perovskite have been studied using DFT calculations. For its most stable

structure, the lattice constant found to be 7.95 Å. The analysis of mechanical prop-

erties confirms that Ca2VInO6 is ductile in nature and mechanically stable, with

a value of Poisson’s ratio is 0.27 and Pugh’s ratio is 1.83. According to electronic

analysis, Ca2VInO6 exhibit p–type semiconducting behavior with indirect bandgap

of 2.362 eV. The electron density aids in understanding the chemical bonding in

Ca2VInO6, maintaining ionic and covalent bonds In–O and V–O, respectively. The

optical properties show interesting phenomena with highest optical absorption in

the ultraviolet region and that’s why our studied compound is suitable for optoelec-

tronic devices such as UV Photodetectors, Light-Emitting Diodes and Photovoltaic

devices. Furthermore, the thermoelectric characteristics of the material are quite in-

teresting and exhibit a high figure of merit that is 0.89, which describes its potential

for thermoelectric generators.
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