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Abstract

In this study, we employ first-principles calculations to systematically investigate

the structural, mechanical, electrical, optical, and thermal properties of the oxide

double perovskite compound Ca2VTlO6. The electronic band structure of the oxide

double perovskite Ca2VTlO6 is examined by density functional theory (DFT) within

the generalized gradient approximation (GGA) using the modified Becke–Johnson

(mBJ) potential, implemented in the WIEN2k code. The compounds exhibit per-

fect cubic symmetry with the space group Fm3̄m (225). Mechanical properties

confirm that Ca2VTlO6 is brittle. According to the electrical property investiga-

tion, Ca2VTlO6 has an indirect band gap of 2.327 eV. The density of states (DOS)

is determined, providing insight into the energy band gap. The optical properties

are investigated using the dielectric function, absorption coefficient, optical conduc-

tivity, reflectivity, and refractive index. These properties show a notable response

in the ultraviolet and visible regions, making the materials well-suited for photo-

cell and optoelectronic device applications. The thermoelectric properties of the

compound are characterized using the BoltzTraP code, with a focus on electrical

conductivity, thermal conductivity, power factor, Figure of merit, and Seebeck co-

efficient. At room temperature, the estimated value of the figure of merit is 0.79 for

Ca2VTlO6. These values suggest that Ca2VTlO6 has the potential to be a material

for thermoelectric device applications.
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Chapter 1

Introduction

With time, the growing energy demand and the alarming depletion of existing energy

sources have driven the scientific community to investigate new renewable energy re-

sources [1]. Over the past decade, double perovskite materials; have attracted much

attention due to their promising application in different field, such as light-emitting

diodes(LEDs), lasers, radiation detectors, and solar cells [2–5]. The use of these ma-

terials is revolutionizing almost every aspect of human life, including entertainment,

transportation, communication, healthcare, and even personal interactions [6].

In recent years, these materials have gained significant attention as innovative solu-

tions for optoelectronic and thermoelectric applications, driven by their outstanding

energy-harvesting performance. Optoelectronic materials are specifically designed

to convert light into electrical signals with high efficiency, whereas thermoelectric

materials are engineered to transform waste heat into usable energy. Direct band

gap semiconductors are preferred for optoelectronic devices, whereas narrow band

gap materials are favored for thermoelectric applications [7,8]. Among various types

of double perovskites, lead-based DP materials demonstrate exceptional potential

in photovoltaic technologies due to their optimal direct band gap, high absorption

properties, and favorable effective masses of charge carriers [9–12]. The use of lead

had to be discontinued due to its toxicity and instability [13]. Double perovskites
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Introduction

demonstrate high efficiency in various applications, offering exceptional stability

through the use of non-toxic, environmentally sustainable materials [14–16]. In re-

cent years, researchers have explored double perovskites (DPs) by replacing Lead

(Pb) with combinations of monovalent and trivalent cations. These compounds

follow the formula A2BB
′X6, where A signifies a large cation like Cs+, B and B′

represent monovalent and trivalent cations, respectively and X stands for halides

or oxygen [17]. The analysis of different combinations of the B and B′ cations is

expected to provide opportunities to discover suitable high-efficiency Pb-free double

perovskites. For the B site, possible candidates include K+, Rb+, Ag+, In+ and

Au+, while for the B′ site, potential choices include Sb3+, Bi3+ and others [18]. The

fundamental structure of oxide based double perovskites is A2BB
′O6 [19].

In this structure, A represents an alkaline-earth or rare-earth ion. In perovskites,

the B-sites, which are transition metal sites, are alternately occupied by distinct

cations, B and B′. Each pair B and B′ is bridged by oxygen atoms, resulting in

alternating BO6 and B′O6 octahedra. This type of compound generally forms ideal

cubic structures belonging to space group no 225 ( Fm3̄m). These materials ex-

hibit various magnetic properties, including ferromagnetism, antiferromagnetism,

and ferrimagnetism, which depend on the specific metal ions involved. For instance,

La2NiMnO6 and Sr2FeMoO6 display ferromagnetism and magnetoresistance, mak-

ing them promising candidates for spintronics applications [20, 21]. Certain double

perovskite compounds display superconducting properties at low temperatures. A

notable example is double-perovskite Bismuth oxides, which have shown significant

efficiency in superconductivity applications. Here are just a few examples of re-

search conducted with double perovskite oxides. The field is extensive and ongoing

research continues to explore their distinct properties and potential applications in

diverse scientific and technological domains. The unstable structure, high humidity,

and environmental pollution associated with lead-based DPs limit their practical

applications. Consequently, the search for stable, eco-friendly, and non-toxic DP

materials has obtained significant attention in recent year.

In our study, we investigated the structural, electronic, optical, mechanical, and
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thermal properties of Ca2VTlO6 double perovskites using a first-principles approach.

Using DFT calculations, we aim to explore the atomic and electronic structures of

Ca2VTlO6, assess its stability, and investigate its electronic band structure. The

high structural and thermodynamic stability emphasizes their potential for both

solar cell and thermoelectric applications. Until now, there have been only a lim-

ited number of experimental and theoretical studies on these materials. Therefore,

for energy systems, we believe this study provides a solid foundation and proper

guidance for utilizing these compositions.

This project is divided into four Chapter, starting with the introduction. In Chapter

2 the Schrödinger equation for charge particle is discussed and extended to gener-

alized many body Schrödinger equation for a system consisting of electrons and

nuclui, neglecting external magnetic and electric fields. This chapter also discusses

an advance theoretical approach, Density Functional Theory which systematically

transforms the many body problem without explicit electron-electron interactions.

Hartree- Fock method, a traditional approach is discussed for finding appropriate

solution to the wave function and energy of a quantum many-body system in sta-

tionary state. At the end of this Chapter various approximation are discussed for

determining the exact functionals for exchange and correlation. In chapter 3, the

structural,electronic, optical, mechanical and thermal properties are discussed in

details. Finally, the Chapter 4 contains summary of this work.
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Chapter 2

Theory

2.1 Basic Quantum Mechanics

To understand the foundation of Density Functional Theory(DFT), it is essential to

first review the fundamental principles of quantum mechanics. Quantum mechan-

ics provides the framework for describing the behavior of particles at the atomic

and subatomic levels. Central to this framework is the Schrödinger equation, which

governs the dynamics of quantum systems and allows us to derive important prop-

erties such as energy levels and wave functions. The Schrödinger equation can be

expressed in both time-dependent and time-independent forms. We will focus on the

time-independent Schrödinger equation, which is particularly relevant for stationary

states of quantum systems. The solutions to this equation give wave functions that

describe the likelihood of where particles are located and how they move, as well

as energy eigenvalues that represent possible energy levels of the system. Together,

these help us to understand how electrons behave in atoms and molecules.

2.1.1 Schrödinger Equation

The Schrödinger equation, formulated by Erwin Schrödinger in 1925, is a key equa-

tion in quantum mechanics that describes the quantum state of a physical system,

4



Theory

essential for understanding the behavior of particles like electrons, photons, and

other quantum objects.

ĤΨ(r) = EΨ(r) (2.1)

Where, Ĥ is the Hamiltonian operator, Ψ is the wave function of the system, and E is

the energy eigenvalue to the quantum state described by Ψ. This equation is crucial

in finding the stationary states of quantum systems. The Hamiltonian, Ĥ, represents

the total energy operator of the system and is typically composed of two parts: The

kinetic energy operator, T̂=− ℏ2
2m

∇2 and the potential energy operator, V̂=V (r).

The kinetic energy operator describes the motion of particles, while the potential

energy operator accounts for the forces acting on them due to their positions within

the system. Together, these components determine the total energy of the quantum

system . Hence, The Schrödinger equation for three dimensions becomes

− ℏ2

2m
∇2Ψ(r) + V (r)Ψ(r) = EΨ(r). (2.2)

2.1.2 Wave Function and Probability Density

The wave function, Ψ, is a fundamental concept in quantum mechanics that encodes

all information about a system’s quantum state, including the probability of finding

particles at specific positions and with particular properties. While Ψ itself lacks

direct physical meaning, its square, |Ψ(r)|2 represents the probability distribution of

particle positions, essential for calculating observable properties and understanding

particle behavior [22, 23].

2.2 The Many–Body Problem

The many–body problem in quantum mechanics addresses the challenge of describ-

ing systems comprising multiple interacting atoms. Unlike single-atom systems,

which can often be analyzed using analytical solutions, many–body systems involve

intricate interactions that lead to emergent phenomena, such as correlation and col-

lective behaviors [24]. The Hamiltonian of many–body system consisting of nuclei
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and electrons can be written as,

Ĥ = T̂nuclui + T̂electrons + V̂nn + V̂ee + V̂ne (2.3)

With the term representing:

• T̂nuclei :the kinetic energy for the nuclei,

• T̂electrons :the kinetic energy for the electrons,

• V̂nn :the nucleus-nucleus Coulomb repulsion,

• V̂ee :the electron -electron Coulomb repulsion,

• V̂ne :the attractive interaction between nuclei and electrons.

These interaction terms make solving the Schrödinger equation for large systems of

atoms exceedingly complex. The Coulomb interactions V̂nn, V̂ee, V̂ne describe the

forces between particles, As the number of atom increases, the number of interactions

grows rapidly, making direct analytical or numerical solutions impractical. With

the explicit forms of the kinetic energies and interaction terms, the many-body

Hamiltonian for a system consisting of nuclei and electrons becomes:

Ĥ = −
∑
I

ℏ2

2MI

∇2
RI

−
∑
i

ℏ2

2me

∇2
ri
+
1

2

∑
I ̸=J

ZIZJe
2

|RI −RJ |
+
1

2

∑
i ̸=j

e2

|ri − rj|
−
∑
I,i

ZIe
2

|RI − ri|
.

(2.4)

Here, the indicates I, J run over the nuclei, while i and j run over the electrons,

RI and MI are the position and mass of nuclei, respectively. ri and me are the

position and mass of electrons. |RI − RJ |, |RI − RI | and |ri − rj| represent the

distant between nuclei-nuclei, nuclei–electrons, and electrons–electrons, respectively.

ZI is the atomic number of the I–th nucleus. Solving the many-body Hamiltonian

is challenging due to the high dimensionality of the wave function, electron-electron

correlations, the Pauli exclusion principle, and complex nucleus interactions. Ana-

lytical solutions are only possible for simple systems like the Hydrogen atom, as most

many–body systems with multiple electrons and nuclei cannot be solved exactly.
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2.2.1 Born–Oppenheimer Approximation

The Born–Oppenheimer approximation simplifies the many–body Schrödinger equa-

tion by treating the nuclei as fixed in space due to their much greater mass compared

to electrons. This allows the electronic wave functions to be solved independently,

reducing the complexity of the system. Under this approximation, the total Hamil-

tonian can be expressed as a sum of two parts: the electronic Hamiltonian Ĥel,

which describes the motion of electrons in the field of fixed nuclei, and the nuclear

Hamiltonian Ĥnuc , which accounts for the motion of the nuclui interacting with

each other. The total Hamiltonian Ĥ is then given by:

Ĥ = Ĥel + Ĥnuc (2.5)

Where

Ĥel = −
∑
i

ℏ2

2me

∇2
ri
+

1

2

∑
i,j

e2

|ri − rj|
−
∑
I,i

ZIe
2

|RI − ri|
(2.6)

and

Ĥnuc =
∑
I

ℏ2

2MI

∇2
RI

+
1

2

∑
I,J

ZIZJe
2

|RI −RJ |
. (2.7)

The Born–Oppenheimer approximation simplifies calculations by treating nuclei as

fixed, focusing on the electronic structure. If nuclear motion is important, their

quantum–mechanical behavior can be included, with the total energy being the sum

of electronic and nuclear energies [25]. This dual approach captures the intricate

interplay between electronic and nuclear dynamics, providing a comprehensive view

of the energy of the system by accounting for both contributions. Once the electronic

Hamiltonian Ĥel is defined, the electronic Schrodinger equation can be expressed as:

ĤΨ(r1, r2, . . . , rN) = EΨ(r1, r2, . . . , rN). (2.8)

The many-body Schrödinger equation is challenging to solve due to the complexity
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of the wave function and electron–electron correlations. While approximations allow

calculations for simple systems like H+
2 , further approximations are needed for larger

systems.

2.2.2 Hartree–Fock Approximation and its Limitations

The Hartree–Fock approximation approximates the many–body wave function using

a Slater determinant, which ensures antisymmetry by combining electron orbitals

and making the wave function change sign when two electrons are exchanged. De-

spite it advantage, The Hartree–Fock approximation has limitations, primarily its

neglect of electron correlation effects, as it assumes a mean-field approximation.

This can lead to inaccuracies in properties like bond lengths, reaction energies, and

excitation energies, especially in systems with strong electron correlations. Further-

more, while the Slater determinant effectively accounts for the antisymmetry of the

wave function, it does not capture the dynamic correlation between electrons, which

arises from their instantaneous interactions. Additionally, the computational cost of

the Hartree–Fock method scales as O(N4), where N is the number of electrons in the

system. This scaling arises because the method involves calculating integrals over

all pairs of electron orbitals. As the number of electrons increases, the number of

required calculations grows rapidly, making it computationally expensive for larger

systems.

2.3 Density Functional Theory

Density Functional Theory (DFT) is a powerful quantum mechanical modeling

method widely used to investigate the electronic structure of many-body systems.

Unlike traditional methods that rely on wave functions, DFT is based on the elec-

tron density, which is considered a fundamental variable. The key idea behind

DFT is that all properties of a system can be determined from its electron density

rather than the many–body wave function. This approach simplifies the problem

of solving the Schrödinger equation, as it reduces the complexity associated with

many–body interactions. DFT is particularly advantageous because it balances ac-
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curacy and computational efficiency, allowing researchers to study larger and more

complex systems than would be feasible with wavefunction–based methods. By

leveraging the Hohenberg-Kohn theorems and the Kohn-Sham equations, DFT pro-

vides a practical framework for exploring a wide range of physical, chemical, and

material properties [26,27].

2.3.1 The Electron Density

In Density Functional Theory (DFT), the electron density n(r) serves as the cen-

tral variable for describing a quantum system. The electron density represents the

probability of finding an electron at a particular point in space and can be derived

from the many–body wave function Ψ(r1, r2, . . . , rN) by integrating over all electron

coordinates. This relationship is expressed mathematically as:

ĤelΨ(r1, r2, . . . , rN) = EΨ(r1, r2, . . . , rN). (2.9)

Additionally, we must remember that all electrons are identical; thus, we cannot

label them as electron 1 or electron N . Instead, we can determine the probability

of any order or set of N electrons being located at the coordinates r1 to rN . While

the wave function contains comprehensive information about the quantum state

of a system, it is the electron density that ultimately determines all measurable

properties. The total number of electrons N in the system can also be calculated

from the electron density using the equation:

N =

∫
n(r) dr. (2.10)

This integration highlights that the electron density encodes vital information about

the total number of electrons, making it a fundamental aspect of DFT. By focusing

on n(r) instead of the complex multidimensional wave function, DFT simplifies

calculations, making it a practical and efficient approach for studying the electronic

structure of various materials.

9



Theory

2.3.2 Hohenberg-Kohn Theorems

Density Functional Theory (DFT) was established in 1964 by Hohenberg and Kohn,

whose theorems laid the foundation for linking electron density to quantum system

properties, making DFT a key alternative to wave–function–based methods. The

Hohenberg–Kohn theorems are central to the formulation of DFT, and they can be

summarized as follows:

First theorem: The ground-state electron density n(r) uniquely determines the

external potential Vext(r) acting on the electrons. This means that if the electron

density of a system is known, the external potential can be uniquely inferred, allow-

ing for the derivation of all ground-state properties, including the total energy, from

the electron density.

The first Hohenberg–Kohn theorem states that the ground–state electron density

uniquely determines the external potential, and thus the Hamiltonian and wave

function. The proof assumes two different potentials yielding the same density,

leading to a contradiction, confirming the one–to–one relationship, Ψ and Ψ′, with

ĤΨ= E0Ψ and Ĥ ′Ψ′=E ′
0Ψ

′. Since Ψ′ is not the ground state of Ĥ, it follows that

E0 < ⟨Ψ′|Ĥ|Ψ′⟩ < ⟨Ψ′|Ĥ ′|Ψ′⟩+ ⟨Ψ′|Ĥ − Ĥ ′|Ψ′⟩ < E ′
0 +

∫
n0(r)[Vext(r)− V ′

ext(r)] dr

(2.11)

similarly

E ′
0 < ⟨Ψ|Ĥ ′|Ψ⟩ < ⟨Ψ|Ĥ|Ψ⟩+ ⟨Ψ|Ĥ ′ − Ĥ|Ψ⟩ < E0 +

∫
n0(r)[V

′
ext(r)− Vext(r)] dr.

(2.12)

Adding this equation (11) and equation (12) leads to the contribution,

E0 + E ′
0 < E0 + E ′

0 (2.13)

Hence, no two different external potentials Vext(r) can give rise to the same ground

state density Vext(r) which determines the external potential Vext(r), except for a

constant. That is to say, there is a one–to–one mapping between the ground state

10
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density Vext(r) and the external potential Vext(r), although the exact formula is

unknown.

Second theorem: For any trial electron density n(r)), the energy functional E[n]

will yield a value that is greater than or equal to the ground-state energy E0. The

equality holds when the trial density corresponds to the true ground-state density.

This variational principle implies that one can minimize the energy functional E[n]

with respect to the electron density to find the ground state of a system. There exists

a universal functional F [n(r)] of the density, independent of the external potential

Vext(r), such that the minimum value of the energy functional

E[n(r)] ≡
∫
n(r)Vext(r) dr + F [n(r)] (2.14)

yields the exact ground-state energy of the system. The exact ground–state density

n0(r) minimizes this functional. Thus, the exact ground–state energy and density

are fully determined by the functional E[n(r)]. The universal functional F [n(r)] can

be written as:

F [n(r)] ≡ T [n(r)] + Eint[n(r)] (2.15)

where T [n(r)] is the kinetic energy and Eint[n(r)] is the interaction energy of the

particles. According to the variational principle, for any wave function Ψ′, the energy

functional

E[Ψ′] ≡ ⟨Ψ′|T̂ + V̂int + V̂ext|Ψ′⟩ (2.16)

reaches its global minimum only when Ψ′ is the ground–state wave function Ψ0,

with the constraint that the total number of particles is conserved. According to the

first Hohenberg–Kohn theorem,Ψ′ must correspond to a ground state with particle

density n′(r) and external potential Vext(r), making E[Ψ′] a functional of n′(r).

Applying the variational principle:

E[Ψ′] =

∫
n′(r)V ′

ext(r) dr+F [n
′(r)] > E[Ψ0] =

∫
n0(r)Vext(r) dr+F [n0(r)] = E[n0(r)]

(2.17)

Thus, the energy functional
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E[Ψ′] =
∫
n′(r)V ′

ext(r) dr + F [n′(r)] > E[Ψ0] =
∫
n0(r)Vext(r) dr + F [n0(r)] =

E[n0(r)] evaluated for the correct ground–state density n0(r) is lower than the value

of this functional for any other density n(r). Therefore, by minimizing the total

energy functional of the system with respect to variations in the density n(r), one

can find the exact ground–state density and energy. This functional, however, only

determines ground-state properties and does not provide any insight into excited

states.

2.3.3 Advantage and Disadvantage of Hohenberg–Kohn The-

orems

The Hohenberg–Kohn theorems, fundamental to density functional theory (DFT),

simplify computational chemistry by relating ground–state properties directly to

electron density instead of complex wave functions. The first theorem ensures a

unique mapping between electron density and external potential, while the second

introduces a variational principle for optimizing density. This shift enables efficient,

accurate modeling of systems from small molecules to large biological structures.

Despite their importance, the Hohenberg–Kohn theorems have limitations: they ap-

ply only to ground states, offering no direct insight into excited states, and the accu-

racy of DFT depends heavily on the choice of exchange-correlation functional. DFT

may struggle with strong electron correlations, and calculating exchange–correlation

energies can still be computationally demanding. Additionally, reliance on external

potentials and challenges in interpreting electron density require careful application

in complex systems.

2.3.4 Kohn-Sham Equation: Reforming Many-body Prob-

lems

The Kohn–Sham equation is a fundamental element of density functional theory

(DFT), derived from the Hohenberg-Kohn theorems, which establish the unique

relationship between ground–state electron density and external potential. By trans-

forming the complex many–body problem into an equivalent system of non-interacting
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single–particle equations, the Kohn–Sham approach enables accurate and compu-

tationally efficient electronic structure calculations for a wide range of systems. In

the Kohn–Sham approach, the true interacting electron system is mapped onto an

auxiliary system of non–interacting electrons that yield the same electron density

as the original system. This is achieved through the Kohn-Sham equations, which

can be expressed as:

− ℏ2

2me

∇2ψi(r) + Veff (r)ψi(r) = ϵiψi(r), (2.18)

Where, Veff (r) is the effective potential that includes the external potential and the

exchange-correlation potential. The Kohn–Sham orbitals ψi(r) are used to construct

the electron density n(r) as:

n(r) =
∑
i

|ψi(r)|2. (2.19)

This approach significantly reduces the complexity of solving the many–body Schrödinger

equation by allowing for the treatment of a system of independent particles, while

still capturing the essential effects of electron correlation through the exchange–

correlation functional. The effective potential in the Kohn–Sham framework can be

expressed as:

Veff = Vext + VHartree[n(r)] + Vxc[n(r)]. (2.20)

Here, Vext represents the external potential acting on the electrons in the system.

This potential typically arises from the interaction between the electrons and fixed

nuclei or any other external fields applied to the system. In many cases, Vext is

described by the Coulomb potential due to the nuclei, reflecting how electrons expe-

rience attraction towards positively charged atomic cores. This term plays a crucial

role in determining the overall potential landscape in which the electrons move, sig-

nificantly influencing the electronic structure of the system. The term VHartree[n(r)]

is the Hartree potential, which describes the classical electrostatic interaction be-

tween electrons in a many–body system. It accounts for the repulsion between

charged particles, reflecting that the potential energy experienced by an electron

13
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is due to the distribution of other electrons around it. The Hartree potential is

calculated as:

VHartree[n(r)] = e2
∫

n(r′)

|r − r′|
dr′. (2.21)

This formulation integrates the electron density n(r) over all space, considering the

effect of all other electrons on a given electron located at r. This approach provides

a mean–field treatment of electron-electron repulsion, avoiding the complexity of

considering every pair of interactions explicitly. The exchange-correlation potential

Vxc[n(r)] represents the quantum mechanical effects of exchange and correlation

among electrons. It is defined as:

Vxc[n(r)] =
δExc[n]

δn
. (2.22)

The exchange term arises from the antisymmetry requirement of the total wave

function for fermions, accounting for the reduction in energy when two electrons are

spatially separated. The correlation term reflects the correlated motion of electrons

that cannot be captured by a mean–field approach, accounting for the ways in which

the presence of one electron affects the probability distribution of another electron’s

position and momentum. From these considerations, the Kohn–Sham Hamiltonian

can be formulated as:

ĤKS = − ℏ2

2me

∇2 + Vext + VHartree[n(r)] + Vxc[n(r)]. (2.23)

The Kohn–Sham formulation improves upon the Hartree method by incorporating

exchange and correlation effects into the effective potential, enabling a more accu-

rate description of many–body systems. In condensed matter physics, the Kohn–

Sham approach iteratively refines the ground-state electron density by solving single-

particle equations starting from an initial density, updating the effective potential,

and recalculating the density until self-consistency is achieved. The self–consistent

Kohn–Sham procedure is performed iteratively, updating the electron density until
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convergence is achieved based on criteria like energy change, density variation, or

atomic forces. If not converged, densities are mixed and the cycle repeats. Once

self-consistency is reached, key physical quantities such as total energy, forces, stress,

eigenvalues, density of states, and band structure can be calculated.

Figure 2.1: Flowchart illustrating the iterative process for solving the Kohn-Sham equa-

tion in density functional theory to obtain the ground-state electron density and associated

propertie of a many-body system

2.3.5 The Role and calculation of Exchange-Correlation

In density functional theory, the exchange–correlation potential Vxc is approximated,

often using the Local Density Approximation (LDA), which assumes Vxc depends

only on the local electron density, similar to a homogeneous electron gas [28]. While

simple, LDA can perform reasonably well for certain materials, especially solids

with nearly uniform electron densities. The Generalized Gradient Approximation

(GGA) improves upon LDA by incorporating electron density gradients, offering

better accuracy for varying densities. Hybrid functionals, like B3LY P , further en-

hance accuracy by mixing exact Hartree-Fock exchange with LDA or GGA exchange-
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correlations. In practice, the calculation of Vxc is an iterative process within the self-

consistent field(SCF) method. The DFT algorithm begins with an initial guess for

the electron density, usually based on atomic configurations. Using this initial den-

sity, the Kohn-Sham equations are solved to update the potential and electron den-

sity. The exchange–correlation potential, Vxc, is recalculated at each step based on

the updated density. This process continues until the electron density converges to a

self-consistent solution, meaning that the input and output densities agree within a

set tolerance. Recent developments also include meta-GGA functionals, which incor-

porate even higher–order density-related terms, such as the kinetic energy density,

to account for more complex interactions. While computationally more expensive,

these functionals can offer improved accuracy for systems with intricate electronic

structures. Thus, although Vxc is not known exactly, various approximations–from

LDA and GGA to hybrid and meta–GGA functionals allow DFT to achieve a good

balance between accuracy and computational efficiency for a wide range of materials

and molecular systems [29].
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Chapter 3

Results and Discussion

In this chapter, first-principles calculations based on Density Functional Theory

(DFT) have been employed to investigate the structural, electronic, mechanical,

optical, and thermoelectric properties of Ca2VTlO6. Computational tools provide

an efficient and accurate means of predicting material behavior at the atomic level,

which is especially valuable for newly designed or experimentally challenging ma-

terials. These simulations allow detailed exploration of intrinsic properties without

the limitations of experimental boundary.

3.1 Computational Method

The structural, electronic, optical, mechanical and thermoelectric properities of

Ca2VTlO6 double perovskites have been investigated using the full–potential lin-

earized augmented plane wave (FP–LAPW) method within the framework of den-

sity functional theory (DFT), as implemented in the WIEN2k package [30]. Lattice

parameters of Ca2VTlO6 were optimized in the simple cubic structure with the space

group Fm3̄m using Birch-Murnaghan equation of state. To obtain more accurate

band gap calculations for the electronic properties, the local density approximation

(LDA) was used in combination with the modified Becke-Johnson (mBJ) poten-
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tial developed by Tran and Blaha. We used it to optimize the ground states of

Ca2VTlO6, with the mBJ potential minimizing the electronic band gap. For the

double perovskite Ca2VTlO6, the RMT values for Ca, V, Tl, and O are 2.0, 1.7,

2.5, and 1.4 a.u., respectively. After optimizing the energy, we set RMT ×Kmax =

8, where RMT represents the smallest radius of the muffin–tin sphere, and Kmax is

the largest reciprocal lattice vector used in the plane wave function expansion. The

number of k-points was chosen as 3500 for SCF (Self Consistent Field) calculations

in the Brillouin zone and 17500 for the DOS calculation. The energy and charge

convergence limits for the iteration process were set to 0.0001 Ry and 0.0001 e,

where e is the charge of electron. Gmax=16 Ry
1
2 . Charpin’s method describes the

elastic behavior of a material with a perfectly cubic structure using three indepen-

dent elastic constants: C11, C12, and C44. Finally, the thermoelectric properties are

determined using the BoltzTraP code, which applies the rigid band approximation

and classical transport theory.

3.2 Structural properties

The structure of the double perovskite Ca2VTlO6 is generated in this study using the

XcrysDen software in combination with the WIEN2k package. The crystal structure

of the double perovskite Ca2VTlO6 belongs to the space group Fm3̄m and exhibits

a cubic arrangement. The unit cell structure of the double perovskites is illustrated

in figure 3.1(a), which consists of ten atoms. The lattice constant of the structure

is 8.093 Å. The atoms Ca, V, Tl and O occupy the following Wyckoff positions: Ca

at (0.25, 0.25, 0.25), V at (0.5, 0.5, 0.5), Tl(0.269, 0, 0) and O at (0.0, 0.0, 0.0).

The volume optimization is allowed for the determination of minimum energy which

is displayed by the system . Now it is clear that, every system tries to its ground

state. So we plotted total energy vs unit cell volume of the compounds which is

shown in the figure 3.1(b). By applying the Murnaghan fit, we find that a volume

of 132.40 Å3 corresponds to a calculated minimum energy of -46106.767 Ry. The

lattice constant of the primitive unit cell was optimized and used to construct the

complete crystal structure, after which the total energy of the conventional unit cell
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Figure 3.1: The crystal structure and Energy vs Volume of double perovskite Ca2VTlO6

was calculated. The Birch-Murnaghan equation of state represent by:

E(V ) = E0+
9V0B0
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(3.1)

In this equation, V0 and V are the ground state unit cell volume and deformed unit

cell volume, E0 is the energy of the ground state, B0 is the bulk modulus and B0 is

its derivative.

3.3 Electronic properties

The calculation of the electronic properties, including band structure and density

of states, offer valuable insights into the optical properties of the materials under

investigation. To determine the DOS and band structure, we use the mBJ potential,

which contributes a more accurate band gap compared to the PBE approximation

and experimental data. The partial density of states is crucial for understanding

the contributions of different angular momentum components. The electron density

helps in understanding the chemical bonding in Ca2VTlO6, supporting the formation

of its ionic bond and covalent bond. In this section, we discussed the electronic band

structure, density of states, and electron density, respectively.
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3.3.1 Band structure

Understanding the electronic band structure is essential for comprehending the phys-

ical properties of crystalline solids, which largely determine their optical and trans-

port properties. A key objective of this work is to calculate the band structure and

assess the band gap of the double perovskite Ca2VTlO6 . The evaluated band struc-
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Figure 3.2: The band structure Ca2VTlO6

ture of Ca2VTlO6 is shown in Figure 3.2. The figure shows that there is no overlap

between the conduction band and the valence band at the Fermi level. The black

horizontal dashed line at 0 eV indicates the Fermi level, set to zero. The valence

band (VB) and conduction band (CB) are represented as colored lines located below

and above the Fermi energy, respectively. In the first Brillouin zone, the conduction

band minimum is located along the X symmetry direction, while the valence band

maximum is located along the L symmetry direction. From the band structure, it

is clear that the double perovskite Ca2VTlO6 exhibits an indirect band gap semi-

conductor behavior, as the valence band maximum and conduction band minimum
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are located at different points in the first Brillouin zone.

3.3.2 Density of state

The Density of States (DOS) describes the number of available quantum states at

each energy level that electrons can occupy in a material. It provides a distribution

of energy levels and how densely packed those levels are at different energies. The

Partial Density of States (PDOS) decomposes the Total Density of State (TDOS)

into contributions from specific atoms, orbitals, or subgroups of the material. This

allows us to see which atoms or orbitals are contributing to the electronic states at

different energy levels. The calculated TDOS and PDOS without spin polarization

are shown in Figure 3.3 and Figure 3.4, respectively. A comprehensive study of
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Figure 3.3: Total density of states for double perovskite Ca2VTlO6

energy band formation requires calculating the density of states (DOS) of the system.

The calculated Fermi energy for the atoms is 0.489 eV. From previous section, we

got the band gap approximately 2.327 eV for mBJ potential which indicates that the

compound is semiconductor. In the total DOS, oxygen (O) mainly contributes to the

valence band (VB), whereas thallium (Tl) primarily dominates the conduction band

(CB), exceeding the contributions of other atoms. We accepted the contributions of

s, p, d, f orbitals for the Tl and V atoms, s, p, d orbitals for the Ca atom, and s, p

orbitals for the O atom. From Figure 3.4(a), we can observe that the contribution
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Figure 3.4: The calculated partial density of states of Ca, Tl, V, O atoms for Ca2VTlO6

double perovskite

of electrons from the Ca atom in the conduction band is greater than in the valence

band, where the d orbitals contribute, but the s and p orbitals do not contribute

significantly. The figure 3.4(b) shows that for the V atom, the d orbital in the

conduction band (CB) dominates over the other orbitals. From Figure 3.4(c), we

observe that the majority of the peaks are in the valence band region, though a

significant peak is also present in the conduction band region. There is a larger

electron contribution from the s and d orbitals than from the s and p orbitals. At

present, looking at Figure 3.4(d), we can observe that the electrons of O atoms are

mostly located in the valence band region rather than the conduction band region,

and the p orbital electrons have a higher concentration than the s orbital electrons.

3.3.3 Electron density

The electron density distributions along the (100) and (110) planes of Ca2VTlO6

reveal strongly localized electron clouds around Tl and O atoms, with minimal

interatomic overlap. This localization and the absence of density bridges suggest

that Tl–O bonding is predominantly ionic, characterized by electron transfer from
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Tl to O. Minor polarization effects may introduce slight covalency, but the bonding

remains overwhelmingly ionic across both planes.

Figure 3.5: The calculated electron density for (100) and (110) plane

3.4 Optical properties

To evaluate a material’s performance in optoelectronic device applications, it is

essential to understand its optical properties. Optical properties describes how ma-

terial interacts with light. We have calculated all the parameters using The TB–mBJ

potential. To investigate the optical properties of Ca2VTlO6 double perovskite mate-

rial, we calculated its dielectric function, absorption coefficient, optical conductivity,

reflectivity and refractive index.

3.4.1 Dielectric function

The complex dielectric function of a material represents the relationship between

its energy band structure and optical transition . The complex dielectric function

of the semiconductor material is given by:

ε(ω) = ε1(ω) + iε2(ω) (3.2)

Where, ε1(ω) and ε2(ω) are the real and imaginary dielectric function. The dielectric

function helps explain how an electromagnetic field impacts a materials optical re-

sponse. The real and imaginary dielectric functions for Ca2VTlO6 were derived from
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the mBJ potential, as shown in the Figure 3.6, where energy is polotted in the X

axis and the real and imaginary dielectric functions plotted on the Y axis. The real
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Figure 3.6: Real and Imaginary part of dielectric function for Ca2VTlO6 double per-

ovskite

part of the dielectric function, ε1(ω) is a measure of how a material responds to an

external electric field in terms of polrization. From the figure 3.6(a), we can analyze

the behaviour of ε1(ω) as a function of energy , offering optical and electronic prop-

erty. The high dielectric constant at low energies suggests strong polarization, while

the peak and subsequent decline reflect electronic transitions and energy absorption.

The negative values at higher energies indicate reflective metallic-like behavior. The

imaginary dielectric function plays a crucial role in describing how these materials

interact with light shown in the figure 3.6(b). It provides insights into absorption

mechanisms driven by electronic transitions and is essential for understanding their

behavior in optoelectronic applications. By examining ε2(ω), we can predict and

optimize the performance of double perovskites in devices such as solar cells, LEDs,

and other photonic technologies.

3.4.2 Optical conductivity

Optical conductivity is a material property that describes the relationship between

the induced current density in the material and the magnitude of the applied electric

field at various frequencies. This is directly related to the electronic structure of the

material. the nature of the bonding and the band structure affects how electrons

respond to an electric field. If the material is metallic or semi-metallic, the optical
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conductivity will be higher as electrons are more easily excited to higher energy

states by the applied field . The optical conductivity exhibits a pronounced feature

near 4 eV, indicating strong electronic transitions. its energy is illustrated in Figure

3.7. The range of energy extends from 0 to approximately 14 eV. Higher photon

energy corresponds to transitions involving higher-energy electronic states in the

material. The Figure of Y axis represents the optical conductivity and The values

range from 0 to 5000. The optical conductivity is close to zero, indicating that

there is likely an optical band gap in this material. The optical conductivity can be

represented by the following equation,

σ(ω) = σ1(ω) + iσ2(ω) (3.3)
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Figure 3.7: Optical conductivity

This means the material does not absorb or conduct light below this threshold,

as photons with energy less than the band gap cannot excite electrons. A sharp

increase in optical conductivity occurs around 2 eV, suggesting the onset of electronic

transitions due to photon absorption. This likely corresponds to the material’s band

gap energy, marking the start of interband transitions. The graph shows a large

peak in optical conductivity near 4 eV, which suggests strong electronic transitions.

This peak could be due to energy band transitions, where electrons move between

different energy bands, indicating a high density of electronic states in this region
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and making the material potentially useful in light-harvesting devices, such as solar

cells or photodetectors. The oscillatory behavior in higher energy ranges indicates

that the material can interact with a broad spectrum of light, including ultraviolet

(UV) radiation.

3.4.3 Absorption coefficient

The absorption coefficient is a fundamental physical parameter that quantifies how

effectively a material absorbs electromagnetic radiation and attenuates its intensity.

The absorption coefficient evaluates a material’s suitability for shielding applica-

tions or functioning as an anti-reflective coating. The absorption coefficient can be

followed by the equation:

α(ω) =

√
2ω

c

[√
ε21(ω) + ε22(ω)− ε1(ω)

]1/2
(3.4)

The following figure shows the absorption coefficient as a function of energy, cal-

culated using the mBJ potential. Figure 3.8 shows the absorption coefficient of

Ca2VTlO6. From the Figure, we can observe that the absorptivity gradually in-
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Figure 3.8: Absorption coefficient

creases in the infrared and visible regions, peaks at 7 eV in the ultraviolet region,

and then decreases as the energy continues to increase. The absorption peak reveals
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that this material can absorb photons in both the ultraviolet and visible ranges.

This makes it an excellent candidate for use in electro-optical applications within

the visible region.

3.4.4 Reflectivity

Optical reflectivity is an important parameter that influences the transition of elec-

trons from the valence band to the conduction band. It is a key optical property

that describes the proportion of light reflected from a surface relative to the amount

of incident light. Reflectivity depends on several factors, including the material’s

electronic structure, surface roughness, and angle of incidence [31]. The expression

for the reflectivity R(ω) is given by,

R(ω) =

∣∣∣∣∣
√
ε(ω)− 1√
ε(ω) + 1

∣∣∣∣∣
2

(3.5)

Figure 3.9 illustrates the variation of optical reflectivity with different energies for

our material. The Figure shows that the Ca2VTlO6 double perovskite reflects in-

cident light at energies below its band gap. After crossing the band-gap energy, it

suddenly exhibits a prominent peak at 4.33 eV before continuing forward. This also
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Figure 3.9: Optical reflectivity

indicates that the maximum reflectivity of the material occurs at 8 eV, where it
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reaches approximately 35%. This suggests that at this energy, the material is most

reflective, and the percentage of light reflected is about 35%. The total reflectiv-

ity over the entire energy range will be lower than this peak due to the decreasing

reflectivity at both lower and higher energies. However, the material’s overall re-

flectivity will likely be in the 15%-35% range, depending on the exact integration of

reflectivity across all energies.

3.4.5 Refractive index

The refractive index is a fundamental property of materials that describes how light

propagates through a medium. It is a dimensionless number that determines the

speed and direction of light within the material relative to its behavior in a vacuum.

The refractive index and the band gap are inversely related, meaning that as the

refractive index increases, the corresponding band gap decreases. The refractive

index n(ω) can be expressed as the square root of the real part of the complex

dielectric function,

ñ(ω) =

√
ε1(ω) + iε2(ω)

2
(3.6)
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Figure 3.10: Refractive index

The curve of refractive index versus energy is shown in Figure 3.10. From the Figure
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we can see that, the refractive index starts at low values, around 0.5, and gradually

increases. This behavior indicates that at lower photon energies, the material has a

weaker interaction with light. The refractive index is low because the material might

be transparent or minimally absorbing at these energies. After reaching a peak near

3 eV. This region corresponds to the onset of significant optical transitions within

the material, where the material absorbs and interacts more strongly with light. The

refractive index reaches its maximum here, indicating stronger electronic transitions

and possible absorption features in the material.

3.5 Mechanical properties

The elastic properties of materials are essential for understanding their strength

and behavior [32]. The elastic constants help us better comprehend the mechanical

stability of solids. The mechanical properties of materials with cubic symmetry are

fully described by the calculated parameters, namely C11, C12, C44. The mechanical

stability of a crystal can be evaluated using the Born stability criteria, which for

a cubic system are expressed as: C11 − C12 > 0, C11 > 0, C44 > 0, C11 + 2C12 >

0 [33]. The existence of the crystal not possible in the stable unless its elastic

constants obey the generalized mechanical stability criteria. The elastic constants

provide insights into various mechanical properties, such as the Young’s modulus

(Y ), which represents the material’s strength; the bulk modulus (B), which indicates

the material’s stiffness, with higher B values corresponding to greater resistance

to compression; and the shear modulus, which describes the material’s ability to

undergo plastic deformation. The obtained value of the shear modulus is 102.440

GPa, which is small, meaning that the compound shows less plastic twist. To

determine the ductile or brittle behavior of B3LY P , The bulk and shear moduli,

which are key indicators of a material’s hardness, can be determined using the Voigt-

Reuss-Hill (VRH) averaging schem. The Voigt limits of the bulk modulus (B) and

shear modulus (G) for a cubic system are given by the following expressions [34,35]:

BV =
C11 + 2C12

3
(3.7)
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and,

Gv =
C11 − C12 + 3C44

5
. (3.8)

However, the Reuss formulae for the bulk and shear moduli are:

Bv = BR (3.9)

GR =
5(C11 − C12)C44

4C44 + 3(C11 − C12)
. (3.10)

Young’s modulus, which determines the strength of a material, is the ratio of linear

stress to strain and can be evaluated using the following relation:

Y =
9BG

3B +G
. (3.11)

we calculated Pugh ratio (B/G) ratio, which was found to be 1.4129, indicating a

brittle nature.The Cauchy pressure value (C11–C44) can also be used to estimate

ductility and brittleness; a material is said to be ductile if its value is positive, and

brittle if it is negative. The data in Table 3.1 clearly show that the Cauchy pressure

for Ca2VTlO6 is negative, highlighting its brittle nature.

C11 C12 C44 C12 - C44 B G Y A B/G ν

239.74 97.24 130.63 -33.39 144.74 102.44 248.65 1.83 1.41 0.213

Table 3.1: The computed values of elastic constant C11, C12, C44, Cauchy’s pressure of

C,Bulk modulus (B), Shear modulus (G), Young’s modulus(Y ), elastic anisotrophy factor

(A), Pugh ratio (B/G) and poisson’s ratio (ν) of Ca2VTlO6

Poisson’s ratio is another criterion used to determine the ductility and brittleness

of a compound. The material has a ductile character if its value is more than 0.26;

if not, it is regarded as brittle. Table also shows that Poisson’s ratio for Ca2VTlO6

is close to 0.213, which confirms its brittle nature. So from the calculated data, we

can say that, Elastic constants are frequently used to evaluate the mechanical firms

its brittle nature. characteristics and structural stability of a material. It is crucial

to uncover information about the binding properties between neighboring atomic

planes, along with the anisotropic nature and structural stability.
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3.6 Thermoelectric properties

The thermoelectric properties of Ca2VTlO6 were predicted using the BoltzTraP com-

putational code [36]. To reduce environmental pollution and prevent energy crises,

thermoelectric materials have gained significant interest for their ability to convert

waste heat into useful electricity [37–39]. Thermoelectric parameters such as Seebeck

coefficient(S), Figure of merit(ZT), power factor(S2σ), electronic conductivity(σ)

and thermal conductivity are against temperature in figure 3.11. he efficiency of

a thermoelectric material is typically evaluated using the dimensionless figure of

merit, ZT, which is defined as:

ZT =
S2σT

κ
(3.12)

which behavior calculating by BoltzTrap program [40] . Figure (a) illustrates the

vibration of electrical conductivity with temperature (T ) in the range of 200 to 1000

K for double perovskite. The calculated results indicate a linear increase in elec-

tronic conductivity with increasing temperature. As a result the material exhibits

semiconductor-like behavior. As temperature rises, more energy is available to excite

electron from the valence band to conduction band. This leads to an increase in the

number of free charge carrier, enhancing conductivity and may overcome scattering

effects caused by structural defects, allowing for better mobility of charge carriers.

In Figure (b), the electronic part of the thermal conductivity
(
κe

τ

)
also increases with

temperature, showing a nonlinear yet consistent upward moving. The graph clearly

shows that thermal conductivity rises with temperature. An increase in thermal

conductivity means the material becomes more efficient at conductivity heat and

unusual behavior where phonon scattering decreases with temperature might allow

phonon to carry more heat. Figure (c) presents the variation of the power factor

(S2σ) with temperature. The power factor combines both the electronic conductiv-

ity and the square of the Seebeck coefficient and serves as a direct indicator of a

material’s ability to convert thermal energy into electrical energy. The power fac-

tor increases steadily with temperature, suggesting that the material is increasingly
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Figure 3.11: Thermoelectric properties as (a) Electrical conductivity, (b) Thermal con-

ductivity , (c) Power factor, (d) Figure of merit, (e) Seebeck coefficient

efficient in thermoelectric energy conversion at higher temperatures—assuming con-

stant or optimized doping levels. The dimensionless Figure of merit (ZT), shown

in Figure (d), provides a comprehensive evaluation of the material’s thermoelectric

efficiency. It depends on the Seebeck coefficient, electronic conductivity, and total

thermal conductivity. Interestingly, Figure of merit exhibits a maximum value of

approximately 0.86 at 200 K, after which it gradually decreases with rising temper-

ature. This behavior indicates that although the electronic performance improves

with temperature, the total thermal conductivity—especially its lattice contribu-

tion—may increase more rapidly, reducing the overall ZT. The decrease in Figure of

merit suggests that this material is more suitable for low-temperature thermoelectric
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applications, where thermal losses are minimized. At room temperature, the esti-

mated values of the Figure of merit is 0.79. And this value indicate that Ca2VTlO6 is

a promising candidate for thermoelectric device application. Figure (e) displays the

Seebeck coefficient (S) as a function of temperature. The Seebeck coefficient initially

shows a high value of about 320 µV/K at 200 K, which is desirable for thermoelec-

tric materials. However, as temperature increases, the Seebeck coefficient steadily

decreases, which is commonly observed in semiconductors. This decreasing value can

be attributed to the increase in intrinsic carrier concentration and possible onset of

bipolar conduction, where both electrons and holes contribute to transport, reducing

the net Seebeck effect. the examined material demonstrates favorable thermoelectric

properties at lower temperatures, particularly around 200 K, with a high Seebeck

coefficient, strong power factor, and peak Figure of merit value. These findings

suggest that the material holds strong potential for low-temperature thermoelectric

device applications, although optimization of thermal conductivity-especially the

lattice component could further enhance its high-temperature performance.
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Chapter 4

Summery

In this work, structural, electronic, optical, mechanical, and thermoelectric proper-

ties of cubic Ca2VTlO6 double perovskite was performed using the WIEN2k code

based on the DFT–based FP–LAPW approach. The lattice parameter is found to

be 8.093 Å. The calculated electronic properties indicate that Ca2VTlO6 is a semi-

conductor with an indirect band gap of 2.327 eV, where the lowest energy bands in

the conduction region and the highest energy bands in the valence region are located

at different symmetry points in the first Brillouin zone. The density of states also

confirms that the compound is a semiconductor. It has been confirmed that the

electrons in oxygen atoms mainly contribute to the valence band, while Ca domi-

nates the conduction band in comparison to the other atoms. The charge density

provides insights into the ionic interactions, particularly between Ca and O. The

optical characteristics show variations, with the maximum refractive index Occupy-

ing from the visible to the ultraviolet, highlighting their potential for solar cells and

other optoelectronic applications. The responsive optical properties of Ca2VTlO6,

especially its wide refractive index range, make it highly suitable for optoelectronic

applications such as photodetectors and LEDs, highlighting its potential for practi-

cal device implementation. An analysis of the mechanical properties indicates that

the material is brittle, with Poisson’s ratio and Pugh’s ratio being less than 0.26
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and 1.75, respectively. The computed thermoelectric properties, obtained using the

BoltzTraP code, reveal that as the temperature increases, electrical conductivity,

thermal conductivity, and power factor increase, while the Seebeck coefficient and

Figure of merit decrease. The results highlight the potential of Ca2VTlO6 for ap-

plication in optoelectronic devices.
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