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Abstract

The structural, electronic, optical, and thermoelectric properties of the Ge-based

lead-free halide perovskite NaGeI3 have been investigated under various hydrostatic

pressures ranging from 0 to 4 GPa utilizing the self-consistent Full-Potential Lin-

earized Augmented Plane-Wave (FP-LAPW) method based on density functional

theory (DFT), as implemented in the WIEN2k package. According to the structural

investigation, the optimized lattice constant for NaGeI3 at 0 GPa is 5.91 Å, which

reduces with applied pressure. Additionally, the studied perovskites have a direct

bandgap of about 0.49 eV, indicating semiconducting behavior at ambient pressure.

The bandgap decreases with an incremental application of pressure. Moreover, the

optical functions improve under pressure, suggesting that these materials could be

used in various optoelectronic devices operating in the visible and ultraviolet spec-

trums. The thermoelectric properties of the compound are explained in terms of

electrical conductivity, thermal conductivity, Seebeck coefficient, figure of merit,

and power factor. The study unveils promising properties of NaGeI3 under different

pressures, opening new avenues for its application in optoelectronic devices.
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Chapter 1

Introduction

In recent years, the increasing demand and the continuous decrease in natural en-

ergy resources has driven the scientific community to explore advanced devices

for harvesting energy from natural sources [1, 2]. Currently, perovskite materials

have gained significant attention among scientists due to their efficiency, remarkable

adaptability, and the simplicity of their manufacturing processes [3,4]. Halide-based

perovskites have recently witnessed a substantial upswing in solar cell device per-

formance due to their application in solar photovoltaic systems [5–7]. In less than

ten years, the energy conversion efficiency of perovskite solar cells has increased

at a staggering rate, exceeding 25% [8–10]. Notably, perovskite solar cells have

rapidly advanced in efficiency, while maintaining a cost-effective production pro-

cess [11–13]. The ease of fabrication using simple, solution-based methods makes

them highly scalable [14–16]. Perovskites excel in light absorption across a wide

spectrum, making them exceptional at converting sunlight into electricity [17–19].

Perovskite compounds have a general formula of ABX3, where A and B represent the

cations, and X (oxygen or halogens) is an anion [20,21]. These generic varieties pro-

vide a broad range of compositions, enabling the fine-tuning of their characteristics

for specific applications such as solar cells, LEDs, and sensors [22, 23]. Many re-

searchers already have published their articles on perovskite materials. As example,
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Introduction

Michael M Lee et al. report a low-cost, solution-processable solar cell, based on a

highly crystalline perovskite absorber with intense visible to near-infrared absorptiv-

ity, that has a power conversion efficiency of 10.9% in a single-junction device under

simulated full sunlight [24]. Rabia Sharif et al. and Arshi Khalid et al. represents a

comprehensive review of the current progresses and material advances in perovskite

solar cells [25]. They discussed the impact of layers such as ETLs and buffer-layers

employed in perovskite solar-cells, seeing their transmittance, carrier mobility, and

band gap potentials in commercialization. Mohammad Abdur Rashid et al. and Md

Saiduzzaman et al. explored the changes in mechanical and optoelectronic behavior

of semiconducting lead-free halide perovskites RbSnX3 (X = Cl, Br) under uniform

hydrostatic pressure for sustainable device applications [26]. Md Borhanul Asfia et

al. and Sahadat Jaman et al. studied the pressure effect on RbSrCl3 to see the band

gap shifting properties for optoelectronic applications [27].

Nowadays, influence of pressure on perovskite compounds is a subject of intense

research, revealing intriguing effects on both the structural and electronic charac-

teristics of these materials [28–31]. Understanding the pressure-dependent behavior

of perovskites is crucial for tailoring their properties to specific applications, rang-

ing from optoelectronic devices to energy storage systems [32–34]. Under pressure,

changes in the lattice parameters can be observed, impacting the arrangement of

atoms within the crystal lattice [35]. Notably, alterations in the electronic band

structure occur, influencing the electrical conductivity and optical properties of per-

ovskites. The application of pressure may also induce phase transitions, leading

to modifications in symmetry and overall crystal structure [36]. Researchers are

actively exploring how these pressure-induced changes can enhance the functional-

ities of perovskite materials, opening up possibilities for improved performance in

applications such as optoelectronic devices and energy storage systems.

In this work, we choose Ge-based lead-free perovskite halide NaGeI3 under uni-

form hydrostatic pressures up to 4 GPa, to study the structural, electronic, optical,

and thermoelectric properties and its pressure dependency for optoelectronic and

thermoelectric applications. We follow the first principle calculation method us-
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Introduction

ing Density Functional Theory (DFT) as implemented in WIEN2k code. Density

Functional Theory (DFT) is a computational method used in quantum mechan-

ics to study the electronic structure of atoms, molecules, and solids. It simplifies

calculations by focusing on electron density rather than directly solving complex

equations, making it a valuable tool for predicting material properties, simulating

chemical reactions, and advancing research in materials science and nanotechnol-

ogy [37]. WIEN2k, a powerful software package developed by Peter Blaha and his

team, utilizes the Full Potential Linearized Augmented Plane Wave (FP-LAPW)

method within the framework of DFT [38]. Renowned for its accuracy, WIEN2k

is versatile in studying various materials, from metals to insulators and magnetic

substances. It plays a crucial role in investigating electronic and magnetic proper-

ties, predicting crystal structures, and unraveling complex phenomena in condensed

matter physics and materials science. Together, DFT and WIEN2k form an effective

combination, offering valuable insights into electronic behavior and advancing our

understanding of diverse materials.

This project aims to provide a comprehensive analysis of structural, electronic, op-

tical, and thermoelectric properties of NaGeI3 under ambient and pressurized con-

ditions. In this study, chapter 2 and 3 contains the background theories related

to the calculations and density functional theory. In chapter 4, we discused the

results we found for the compound both in ambient and pressurized conditions. In

last chapter, we make a conclusion about the compound and its applicability as a

practical device.

3



Chapter 2

Basic Quantum Mechanics

2.1 Schrödinger’s equation

The Schrödinger equation one of the fundamental equations of quantum mechan-

ics and describes the spatial and temporal behavior of quantum-mechanical sys-

tem. The Schrödinger equation is a linear partial differential equation that govern-

sthe wave function of a quantum-mechanical system [39]. Austrian physicist Erwin

Schrödinger first proposed the equation in 1926 [40]. The Schrödinger equation

can be time-dependent and time-independent. The time-independent Schrödinger

equation is

Ĥψ ~(r) = Êψ ~(r). (2.1)

where Ĥ is the hamiltonian, ψ is the wave function and Ê is the energy eigenvalue.

Using the Hamiltonian for a single particle

Ĥ = T̂ + V̂ = − ~2

2m
~∇2 + V ~(r). (2.2)

4



Basic Quantum Mechanics

this equation leads to the time-independent single-particle Schrödinger equation

Êψ ~(r) = [− ~2

2m
~∇2 + V ~(r)]ψ ~(r). (2.3)

For N particles in three dimensions, the Hamiltonian is

Ĥ =
N∑
i=1

p̂2i
2mi

+ V (~r1, ~r2, ..., ~rN). (2.4)

The corresponding Schrödinger equation is

Êψ(~r1, ~r2, ..., ~rN) = [
N∑
i=1

p̂2i
2mi

+ V (~r1, ~r2, ..., ~rN)]ψ(~r1, ~r2, ..., ~rN). (2.5)

2.1.1 The wave function

The wave function of a particle, at a particular time, contains all the information

that anybody at that time can have about the particle (e.g.position, momentum

and energy). The wave function can specify entirely the configuration or state of

a quantum particle. It is not a real quantity, but a complex-valued functions of

space and time. It has no physical interpretation and also not measurable, but the

square of the wave function has a physical interpretation. In one dimension, the

wave function is denoted by ψ(x).

The wave equation, in general, is derived by solving Schrödinger equation. The

square of the wave function gives the probability density, i.e.

|ψ|2 = |ψ∗ψ|2. (2.6)

The wave function ψ must be finite everywhere. If ψ is finite for aparticular point,

that means an infinite larger probability of finding the particles at that point. The

wave function must be single valued. If it has more than one value at any point,

that means more than one value of probability of finding the particle at that point

which is obviously improbable. The wave function must be continuous and have

a continuous first derivative everywhere and its must be normalized. For the sake

5



Basic Quantum Mechanics

of simplicity the discussion is restricted to the time-independent wave function. A

question always arising with physical quantities is about possible interpretations

as well as observations. The Born probability interpretation of the wave function,

which is a major principle of the Copenhagen interpretation of quantum mechanics,

provides a physical interpretation for the square of the wave function as a probability

density [41].

P = |ψ(~r1, ~r2, ..., ~rN)|2d~r1d~r2, ..., d~rN . (2.7)

Equation (2.7) describes the probability that particles 1,2,...,N are located simulta-

neously in the corresponding volume element d~r1, d~r2, ..., d ~rN [37]. What happens if

the positions of two particles are exchanged, must be considered as well. Following

merely logical reasoning, the overall probability density cannot depend on such an

exchange,i.e.

|ψ(~r1, ~r2, ..., ~ri, ~rj, ..., ~rN)|2 = |ψ(~r1, ~r2, ..., ~rj, ~ri, ..., ~rN)|2. (2.8)

There are only two possibilities for the behavior of the wave function during a particle

interchange. The first one is a symmetrical wave function, which does not change

due to such an interchange. This corresponds to bosons (particles with integer or

zero spin) [42,43]. The other possibility is an anti-symmetrical wave function, where

an exchange of two particles causes a sign change, which corresponds to fermions

interest, which are fermions. The anti-symmetric fermion wave function leads to

the Pauli principle, which states that no two electrons can occupy the same state,

whereas state means the orbital and spin parts of the wave function [44] (the term

spin coordinates will be discussed later in more detail). The anti-symmetry principle

can be seen as the quantum-mechanical formalization of pauli’s theoritical ideas in

the description of spectra (e.g. alkaline doublets) [45]. Another consequence of

the probability of finding a particle in a volume element, setting the full range of

coordinates as volume element must result in a probability of one, i.e. all particles

must be found somewhere in space. This corresponds to the normalization condition

6
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for the wave function.

∫
d~r1

∫
d~r2...

∫
d~rN |ψ(~r1, ~r2, ..., ~rN)|2 = 1. (2.9)

Equation (2.9) also gives insight on the requirements a wave function must fulfill in

order to be physical acceptable. Wave functions must be continuous over the full

spatial range and square-integratable [46]. Calculating the expectation value of the

relevant observable for that wave function [47]. For an observable O(~r1, ~r2, ..., ~rN),

this can be written as

O = 〈O〉 =

∫
d~r1

∫
d~r2...

∫
d~rNψ ∗ (~r1, ~r2, ..., ~rN)

〈
Ô
〉
ψ(~r1, ~r2, ..., ~rN). (2.10)

2.2 Born-Oppenheimer (BO) approximation

The Born-Oppenheimer approximation is the first of several approximations used

to simplify the solution of the Schrödinger equation. It is one of the basic concepts

underlying the description of the quantum states of molecules. It simplifies the

general molecular problem by separating nuclear and elecrtonic motions.

The Hamiltonian of a many-body system consisting of nuclei and electrons can be

written as

Htot = −
∑
I

~2

2MI

∇2
~RI
−
∑
i

~2

2me

∇2
~ri

+
1

2

∑
I,J
I 6=J

ZIZJe
2

| ~RI − ~RJ |

+
1

2

∑
i,j
i 6=j

e2

|~ri − ~rj|
−
∑
I,i

ZIe
2

| ~RI − ~ri|
.

(2.11)

Where the indexes I,J run on nuclei, i and j on electrons, ~RI and MI are positions

and masses of the nuclei, ~ri and me of the electrons, ZI the atomic number of nucleus

I. The first term is the kinetic energy of the nuclei, the second term is the kinetic

ebergy of the electrons, the third term is the potential energy of nucleus-nucleus

Coulomb interaction, the fourth term is the potential energy of electron-electron

Coulomb interaction and the last term represents the potential energy of nucleus-

7
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electron Coulomb interaction [48]. Since the nuclei are much heavier than electrons,

the nuclei move much slower than the electrons. Therefore we can separate the

movement of nuclei and electrons. So, the electronic wave function depends upon

only the nuclear position but does not depends upon their velocities. The total wave

function can be written as

Ψ(
{
~RI

}
,
{
~ri
}

) = Θ(
{
~RI

}
)φ(
{
~ri
}

;
{
~RI

}
). (2.12)

Where Θ(
{
~RI

}
) describe the nuclei and φ(

{
~ri
}
,
{
~RI

}
)the electrons. So, we can

write the Schrödinger equation into two separate equation.

Heφ(
{
~ri
}

;
{
~RI

}
) = V (

{
~RI

}
)φ(
{
~ri
}

;
{
~RI

}
). (2.13)

Where,

He = −
∑
i

~2

2me

∇2
~ri

+
1

2

∑
I,J
I 6=J

ZIZJe
2

| ~RI − ~RJ |
+

1

2

∑
i,j
i 6=j

e2

|~ri − ~rj|
−
∑
I,i

ZIe
2

| ~RI − ~ri|
.(2.14)

and [
−
∑
I

~2

2MI

∇2
~RI

+ V (
{
~RI

}
)

]
Θ(
{
~RI

}
) = E ′Θ(

{
~Ri

}
). (2.15)

Equation (2.17) is the equation for the electronic problem with the nuclei positions

fixed. The significance of the BO approximation is to separate the movement of

electrons and nuclei.

2.3 The Hartree-Fock approach

In The spirit of the Born-Oppenheimer approximation, the electronic equation for

molecules that depends parametrically on the nuclear co-ordinates is approximated

using the Hartree-Fock method. Hartree-Fock method is a method of approximation

for the determination of the wave function and the energy of a quantum many-body

system in a schrödinger equation [49]. Suppose that, ψ is approximated as an

antisymmetrized product of N orthonormal spin orbitals ψi(~x), each a product of a

8
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spatial orbital φk(~r) and a spin function σ(s) = α(s) or β(s), the Slater determinant,

φHF = (N !)−
1
2


ψ1(~x1) ψ2(~x1) ... ψN(~x1)

ψ1(~x2) ψ2(~x2) ... ψN(~x2)
...

...
. . .

...

ψ1(~xN) ψ2(~xN) ... ψN(~xN)

 = (N !)−
1
2det[ψ1, ψ2, ..., ψN ].

(2.16)

A general expression for the Hartree-Fock energy is obtained by uses of the Slater

determinant.

EHF = 〈ψHF |Ĥ|ψHF 〉 =
N∑
i

Hi +
1

2

N∑
i,j=1

(Jij −Kij). (2.17)

Where, the first term corresponds to the kinetic energy and the nucleus-electron

interacrtions. So, the single particle contribution of the Hamiltonian is written as,

Hi =

∫
ψ∗i (~x)[−1

2
∇2 + V (~x)]ψi(~x)d~x. (2.18)

And the last term of equation(2.17) correspond electron-electron interactions. They

are called Coulomb (Jij) and exchange integral (Kij). We can write this term in the

following way,

Jij =

∫ ∫
ψi(~x1)ψ

∗
i (~x1)

1

r12
ψ∗j (~x2)ψj(~x2)d~x1d~x2. (2.19)

Kij =

∫ ∫
ψ∗i (~x1)ψj(~x1)

1

r12
ψi(~x2)ψ

∗
j (~x2)d~x1d~x2. (2.20)

These integrals are all real, and Jij ≥ Kij ≥ 0.

2.3.1 Limitations and failings of the Hatree-Fock approach

Atoms as well as molecules can have an even or odd number of electrons. If the

number of electrons is even and all of them are located in double occupied spatial

9
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orbitals φi, the compoubd is in a singlet state. Such systems are called closed-shell

systems. Compounds with an odd number of electrons as well as compounds with

single occupied orbitals, are called open-shell systems respectively. These two types

of systems correspond to two different approaches of the Hatree-Fock method. In

the restricted HF method (RHF), all electrons are considered to be paired in orbitals

whereas in the unrestricted HF method (UHF) this limitation is lifted totally. It

is also possible to describe open-shell systems with a RHF approach where only

the single occupied orbitals are excluded, which is then called a restricted open-

shell HF (ROHF) which is an approach closer to reality but also more complex and

therefore less popular than UHF. There are also closed-shell systems which require

the unrestricted approach in order to get proper results. For instance, the description

of the dissociation of H2 (i.e.) the behavior at large internuclear distance, where one

electron must be located at one hydrogen atom. Therefore the choice of method is

always a very important point in HF calculations. Kohn states several M = p5 with

3 ≤ p ≤ 10 parameters for an output with adequate accuracy in the investigations

of the H2 system. For a sytem with N = 100 electrons, the number of parameters

rises to

M = p3N = 3300 to 10300 ≈ 10150 to 10300 (2.21)

According to the equation (2.21), energy reduction would have to be done in a space

with at least 10150 dimension, which is well above current computer capabilities. As

a result, HF methods are limited to situations involving a modest number of electron

(N ≈ 10). This barrier commonly referred to as the exponential well because of the

exponential component in (2.21) [50]. Since a many electron wave function cannot

be described entirely by a single Slater determinant, the energy obtained by HF

calculations is always larger than the exact ground state energy. The most accurate

energy obtainable by HF methods is called the Hatree-Fock limit. The difference

between EHF and Eexact is called correlation energy and can be denoted as [51]

EHF
corr = Emin − EHF . (2.22)

10



Chapter 3

Density Function Theory

3.1 The electron density

A general statement concerning the computation of observables has been presented

in 2.1.1 about the wave function ψ. This section is about a quantity that is computed

in a similar manner. The electron density (for N electrons) as the basic variable of

density functional theory is defined as

n(~r) = N
∑
s1

∫
d~x2...

∫
d~xNψ

∗(~x1, ~x2, ..., ~xN)ψ(~x1, ~x2, ..., ~xN) (3.1)

Wchich is the basic variable of density function theory. If the spin coordinates are

neglected, the electron density can even be expressed as measurable observable only

dependent on spatial coordinates.

n(~r) = N

∫
d~r2...

∫
d~rNψ ∗ (~r1, ~r2, ..., ~rN). (3.2)

The total number of electrons can be obtained the electron density over the spatial

variables, which can e.g. be measured by X-ray diffraction.

11



Density Function Theory

N =

∫
d~rn(~r). (3.3)

3.2 Thomas-Fermi Model

The predecessor to DFT was the Thomas-Fermi (TF) model proposed by Thomas

and Fermi in 1927. In this method, they used the electron density n(r) as the basic

variable instead of the wave function. The total energy of a system in an external

potential Vect(r) is written as a function of the non-interacting electron density n(r)

as:

ETF [n(r)] = A1

∫
n(r)

5
3d~r +

∫
n(r)Vect(r)dr +

1

2

∫∫
n(r)n(r’)

|r− r’|
drdr’ (3.4)

where the first term is the kinetic energy of the non-interacting electron in a ho-

mogeneous electron gas (HEG) with A1 = 3
10

(3π2)
2
3 in the atomic units. The free

electron energy state

3.3 Hohenberg-Kohn Theorem

The formulation of density functional theory as an exact theory of many body

system was the approach of Hohenberg and Kohn. As we all know, the ground

state energy and ground state wave function can be determined by minimizing |ψ|

(energy functionals) for an electronic system described all the properties for ground

state. This discription in this report is confined only for non degenerate ground

state. The theory is based upon two theorems.

3.3.1 Theorem 1

Statement: The ground state energy E is a unique functional of the electron den-

sity.

E = E[n(r)] (3.5)

12
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Proof: We know that the ground state particle density is n(r) for a system and

Vext(r) is the external potential for the system. The proof is based on minimum

energy principle. Suppose we have different two potential Vext and V ′ext, which is

different from each other by a constant but read to the same ground state density

no(r).For that we will get the different Hamiltonian H and H’ and different ground

state wave functions.

Ĥψ = Eoψ (3.6)

Ĥ ′ψ′ = E ′oψ
′ (3.7)

Since ψ′ is not the ground state of Ĥ . It follows that

Eo <
〈
ψ′|Ĥ|ψ′

〉
(3.8)

<
〈
ψ′|Ĥ|ψ′

〉
+
〈
ψ′|Ĥ − Ĥ ′|ψ′

〉
(3.9)

< E ′o +

∫
no(r)[Vext(r)− V ′ext(r)]dr (3.10)

Similarly,

E
′

o <
〈
ψ|Ĥ ′|ψ

〉
< Eo +

∫
no(r)[V

′
ext(r)− Vext(r)]dr (3.11)

By adding equation 3.8 and 3.11 we get,

Eo + E ′o < E ′o + Eo (3.12)

As the hamiltonian is fully known, except for a constant shift of energy, it says

that the many body wavefunction for all state are determined. Therefore all the

properties of the system are completely determined if and only if the ground state

density is known.

3.3.2 Theorem 2

Statement: If the functional E[n(r)] is known, the exact ground state energy and

density can be fully determined.

13
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Proof: The Universal functional can be written as,

F [n(r)] ≡ T̂ [n(r)] + Eint[n(r)] (3.13)

where,

T̂ [n(r)] = kinetic energy

Eint[n(r)] = interaction energy of the particles.

According to variational principle, the energy functional E[ψ′] is

E[ψ′] ≡
〈
ψ′|T̂ + V̂int + V̂ext|ψ′

〉
(3.14)

When ψ′ = ψo, it has a global minimum value with a constant that the totat number

of particles are conserved. According to HK theorem 1 ψ′ must correspond to the

ground state whose particle density is n′(r) and external potential is V ′ext. Then

E[ψ′] is a functional of n′(r). According to the variational principle,

E[ψ′] ≡
〈
ψ′|T̂ + V̂int + V̂ext|ψ′

〉
= E[n′(r)] (3.15)

E[ψ′] ≡
∫
n′(r)V ′extdr + F [n′(r)] > E[ψo] =

∫
n(r)Vextdr + F [no(r)] = E[no(r)]

(3.16)

Hence, Energy functional E[n(r)] ≡
∫
n(r)Vextdr+F [no(r)] evaluats for the correct

ground state density no is lower than the value of the function of any other density

n(r). By minimizing the total energy functional with respect to the variations in the

density n(r), one could find the exact ground state density and energy.

3.4 Kohn-Sham Equation

Hohenberg and Kohn framework is not very usefull yet in actual calculation. The

second Kohenberg-Kohn theorem is the only possibility for the minimization of

energy. An example of an iterative approachis the Hatree equation for self consistent

14
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single particle [50,52]. The Hatree equation is clearly a wavefunction based equation

and it is not directly related to Hohenberg and Kohn. Hatree’s approximation says

that every electron moves in an effective single particle potential of the form of ,

vH(~r) = − Z
|~r|

+

∫
n(~r)

|~r − ~r′|
d~r. (3.17)

where,

− Z
|~r| = attractive coulomb potential of a nucleus with an atomic number Z.∫ n(~r)

|~r−~r′|
= correspond to the potential caused by the mean electron density distribu-

tion n(~r).

n(~r) can be expressed in terms of the single particle wave function,

n(~r) =
M∑
j=1

|φj|2. (3.18)

According to the Pauli exclusion principle,the sum of above equation runs over the

lowest eigenvalues. For single particle. 3N-dimensional Schrödinger equation can be

written as,

[−1

2
~∇2 + vH(~r)] φj(~r) = εjφj(~r) j = 1, ..., N. (3.19)

Therefore Khon and Sham investegated the DFT applied to a system of N non-

interacting electron in an external potential. The expression for the energy of such

a system is,

Ev(~r)[n
′(~r)] ≡

∫
v(~r)n′(~r)d~r + Ts[n

′(~r)] ≥ E. (3.20)

where,

n′(~r) = v respectable density for non-interacting electrons

Ts[n
′(~r)] = kinetic energy of the ground state of those non-interacting electron [50].

In case of non-interacting electron, the Euler-Lagrange equation [53] can be written
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as,

δEv[n
′(~r)] ≡

∫
δn′(~r)[v(~r) +

δ

δn′(~r)
Ts[n

′(~r)]|n′(~r)=n(~r) − ε]d~r = 0. (3.21)

where,

n′(~r) = exact ground state density for the potential v(~r).

ε = the Lagrangian multiplier to ensure particle density conservation.

For such a system the total ground state energy and particle density can simply be

writen as,

E =
N∑
j=1

εj. (3.22)

and

n(~r) =
N∑
j=1

|φj(~r)|2. (3.23)

For an interacting case the construction of Eular-Lagrange equation becomes.

δEv[n
′(~r)] ≡

∫
δn′(~r)[veff (~r) +

δ

δn′(~r)
Ts[n

′(~r)]|n′(~r)=n(~r) − ε]d~r = 0. (3.24)

with

veff (~r) ≡ v(~r) +

∫
n(~r)

|~r − ~r′|
d~r + vxc(~r). (3.25)

and the functional derivative

vxc(~r) ≡
δ

δn′(~r)
Exc[n

′(~r)]|n′(~r)=n(~r). (3.26)

The corresponding equations are the single pafticle Schrödinger equation

[−1

2
~∇2 + veff (~r)] φj(r) = εjφj(~r) j = 1, ..., N. (3.27)

As well as the equation for the particle density is

n(~r) =
N∑
j=1

|φj(~r)|2. (3.28)
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Which form togather self consistent Khon-Sham equation and effective potential.

If one use the exact Exc[n(~r)] and vxc[n(~r)] it would be possible to find the exact

solution.

3.5 Solving Kohn-Sham euation

In a condensed matter system the KS equationgives a way to obtain the exact

density and energy of the ground state. The process starts with an initial electron

density n(~r), usually a superposition of atomic electron density, then the effective

KS potential VKS is calculated and the KS equation is solved with single-particle

eigenvalues and wavefunctions, a new electron density is then calculated from the

wavefunctions.

Initial guess

 
Calculate effective potential

Calculation electron density

Self-
consistent?

Output quantities
Potential Energy, Static structure,

Born effective charges, etc...

Solve KS equation

n(r)

V eff (r)=V ext (r )+V Hartree [n]+V xc[n]

[
−h̄
2m

∇
2
+V eff (r)]ψi(r )=εmeψi(r )

No

Yes

n(r)=∑
i=1

N

ψ
*

i(r )ψi(r )

Figure 3.1: Flow chart of solving the Khon-Sham equation.

This is usually done numerically through some self consistent iteration as shown in

above flowchart. Self-consistent condition(s) can be the change of total energy or

electron density from the previous iteration or total force acting on atoms is less

than some chosen small quantity, or a combonation of these individual conditions.
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If the self-consistency is not achieved, the calculated electron density will be mixed

with electron density from previous iterations to get a new electron density. A new

iteration will start with the new electron density. This process continues until self-

consistency is reached [54]. After the self-consistency is reached, various quantities

can be calculated including total energy, force, stress, eigenvalues, electron density

of states, band structure , etc..

3.6 The Exchange-correlation (XC) functional

The exchange correlation potential of the Khon-Sham density functional scheme is

the difference between the fermi potential, an effective potential appears in the one

electron Schrödinger equation for the equation for the square root of the electron

density and Pauli potential , i.e. vXC(r) = vF (r)−vP (r) [55]. Generally, two approx-

imation methods have been accomplished to approximate the exchange-correlation

functional. The first approximation method of the exchange-correlation functional

is the local density approximation (LDA). The Generalized gradient approximation

(GGA) is the second approximation method in the Khon-Sham exchange-correlation

function. In the generalized gradient approximation (GGA), the exchange and corre-

lation energies include the local electron density and the local gradient in the electron

density. The LDA is traditionally based on knowledge of the energy of the infinite

three-dimensional (3D) homogeneous electron gas [56]. The XC energy per electron

at a point ~r is considered the same as that for a homogeneous electron gas (HEC)

that has the same electron density at the point ~r. The total exchange-correlation

functional EXC [n(~r)] can be written as

ELDA
XC [n(~r)] =

∫
n(~r)εhomXC (n(~r))d~r = ELDA

X [n(~r)] + ELDA
C [n(~r). (3.29)

The defination of the XC energy functional of GGA is the generalized form in equa-

tion(3.34) of LDA to include corrections from density gradient (~r) as

EGGA
XC [n(~r)] =

∫
n(~r)εhomXC (n(~r), |(~r)|, ...)d~r. (3.30)
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Where εhomXC is the exchange energy density of HEG. GGA generally works better

than LDA, in predicting bond length and ninding energy of molecules, crystal lat-

tiec constants, and so on, especially systems where the charge density is rapidly

varying [57].
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Chapter 4

Results and discussion

4.1 Computational details

In this work, lead-free halide peroveskite NaGeI3 has been investigated using full

potential linear augmented plane wave (FP-LAPW) method, as implemented in the

WIEN2k code based on density functional theory (DFT). To find the optimized

ground states of the considered materials, the generalized gradient approximation

(GGA) with the Perdew-Burke-Ernzerhof (PBE) approximation was used. The

exchange correlation potential was solved by generalized gradient approximation

(GGA) that underestimates the band gap value. the later needed to be corrected

using Tran-Blaha modified Becke and Johnson local density approximation (TB-

mBJ) methods provide accurate results in good agreement for optical properties and

band gap with experimental data. The basic functions are expended into spherical

harmonic function inside the muffin-tin sphere and Furier series in the interstitial

region. The value of RKmax was set to 7, where Kmax is the plane wave cut-off and

RMT is the smallest of all atomic sphere radii. The energy convergence criteria was

set to 10−5Ry, while the charge convergence criteria was also set to 10−4e, where e is

an electron charge and the number of k-points in the Brillouin zone is approximately

104. Finally, the BoltzTraP code was employed under an approximation of constant
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relaxation time for the thermoelectric properties evaluation.

4.2 Crystallographic Structure

The crystal structure of halide perovskite NaGeI3 is a cubic structure with a space-

group of (pm3̄m) (space group number 221). The estimated crystallographic struc-

ture are depicted in Figure 4.1. The lattice constant for the structure is 5.91 Å. The

Wyckoff positions of Na, Ge and I atoms are as follows: Na (0.0, 0.0, 0.0), Ge (0.5,

0.5, 0.5) and I (0.0, 0.5, 0.5). The volume optimization is provided with WIEN2k

package that determines the minimum energy possessed by a system by plotting

volume as a function of energy, which has been shown in Figure 4.2.

Figure 4.1: Ball and stick structure of cubic perovskite halide NaGeI3.

In order to determine the optimized ground states of the materials being studied,

the energy versus volume of a unit cell of the crystals was calculated. The Birch-

Murnaghan thermodynamic state relation is used as the basis for this analysis. The

lattice constant of NaGeI3 perovskite has been found to be 5.91 Å and this value

decreases when pressure increases, which is shown in Table 4.1.
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Figure 4.2: Energy versus volume optimization curves of NaGeI3.

Table 4.1: Calculated lattice parameters (Å) and band structure of NaGeI3 at different

hydrostatic pressure.

Pressures (GPa) Lattice parameters (Å) Band gap (eV)

0 5.91 0.49

1 5.81 0.35

2 5.75 0.17

3 5.68 0.03

4 5.64 0.00

4.3 Electronic Properties

The electronic properties are predominanntly resolved taking into account the high

symmetry direction of the Brillouin zone (BZ). The study of electronic properties

is crucial to gain a clear concept about optical properties of NaGeI3 alloy. The

basic electronic properties including band structure, density of states (DOS), and

charge density. TB-mBJ potential is used to calculate the electronic properties

under hydrostatic pressure ranging from 0 to 4 GPa.
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4.3.1 Band structure

The electronic band structure is a representation of the allowed electronic energy

levels of materials and is used to better inform their electrical properties. The

estimated band structures are depicted in Figure 4.3. The black horizontal dashed

line at 0 eV indicates the Fermi level, which denoted by (EF ), whereas the valance

band (VB) and conduction band (CB) are presented by colored lines below and

above the EF , respectively. In this study, the energy band is considered from −4 to

+4 eV. NaGeI3 has a direct band gap (Eg) of 0.49 eV at R point of the Brillouin zone

at ambient pressure. The conduction band minima at R point begin to move towards

the EF are illustrated in Figure 4.3, resulting in a lowering of Eg. The valance band

maxima and conduction band minima at 4 GPa for NaGeI3. Eg vanishes, exhibiting

that NaGeI3 transforms from semiconducting to conducting nature.

Figure 4.3: The calculated band structures of NaGeI3 under various applied pressures.
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4.3.2 Density of states

The density of states (DOS) is essentialy the number of different states at a partic-

ular energy level that electrons are allowed to occupy, i.e. the number of electron

states per unit volume per unit energy. DOS also describes the electronic states con-

tribution toward valance and conduction bands and accurately interprets the size of

band gap. To demonstrate the electronic behavior, the calculated partial density of

states (PDOS) of NaGeI3 under various pressure is depicted in Figure 4.5(a,b). The

black dashed vertical line at 0 eV also reprasent the Fermi level. The valance band

of the system is dominated by I-5p for NaGeI3 with Ge-4p states. However, if the

pressure increased continuously the contribution of I-5p state also reduces. In this

case, there is no contribution of Na-3s state. The conduction band originated from

the contributions of Ge-4p state of NaGeI3, in which the contribution of Ge-4p is

higher than those of other orbitals. At 4 GPa the conduction and valence bands col-

lapse at Fermi level and diminishes the band gap. As a consequence, the electronic

nature shifts from semiconductor to metallic nature with increase in pressure. On

the contrary, the total density of states (TDOS) of NaGeI3 under pressure is pre-

sented in Figure 4.4(a). It also observed that the nonzero value of TDOS appeared

at the Fermi level, when pressure is 4 GPa of NaGeI3.
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Figure 4.4: The total density of states of cubic perovskite NaGeI3 under pressure.
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Figure 4.5: The total density of states (a) and partial density of states (b) of cubic

perovskite NaGeI3 under pressure.

4.4 Electron density

Charge density is the measure of electric charge per unit area of a surface, or per

unit volume of a body or field, which describes how much charge is stored in a

particular field. To obtain clear concept about the chemical bonding in NaGeI3,

Figure 4.6 illustrate the charge density along the crystallographic planes (101) and

(100) at 0, 1, 2 and Figure 4.7 depicts those of at 3 and 4 GPa pressure. At 0 GPa,

the charge distributions of Na and I atoms do not overlap along the (100) and (100)

planes, which indicates ionic bond of those atoms. But a few overlapping of Ge

and I atoms along the (101) plane, exposing the covalent bonding of Ge-I. However,
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Figure 4.6: The calculated electron density of NaGeI3 (a,c,e) for (101) plane and (b,d,f)

for (100) plane at 0, 1, and 2 GPa pressure respectively.

the space between Na and I reduces along the (100) plane without overlaping the

charge distribution while pressure rises, preserving the ionic nature of Na-I bond.

The overlaping between Ge and I atoms increases more along the (101) plane under

pressure, also representing the covalent nature of Ge-I bond.

4.5 Optical properties

Optical properties define how it interacts with light. To understand the optical prop-

erties of perovskite halid NaGeI3, we need to studied the dielectric function, absorp-

26



Results and discussion

Figure 4.7: The calculated electron density of NaGeI3 (a,c) for (101) plane and (b,d) for

(100) plane at 3 and 4 GPa pressure respectively.

tion coefficient, conductivity, reflectivity and refractive index etc. These properties

are investigated under various hydrostatic pressures up to 4 GPa. We have calculate

all this properties through MBJ-LDA potential functional.

4.5.1 Dielectric function

The dielectric function is one important optical properties of NaGeI3, which mainly

consists of two parts such as real dielectric function and imaginary dielectric func-

tion. The dielectric function is denoted by the symbol ε(ω). It is defined as

ε(ω) = ε1(ω) + iε2(ω). (4.1)

To determine the real dielectric function, the transformation of Kramers-Kronig is

implemented and the components of the momentum matrix are used to calculate

the imaginary dielectric part [58]. The real part of NaGeI3 dielectric permittivity

is depicted in Figure 4.8(a) for photon energies up to 12 ev. The real component

of the dielectric function can be used to learn about the polarization and dispersion
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Figure 4.8: (a) Real dielectric function and (b) imaginary dielectric function of cubic

NaGeI3 as a function of energy under various applied pressures.

impacts. The maximum frequency of Zero, denoted as ε(0), which refers to the

electronic component of the real state of the function.On the contorary,the charac-

tristics of the dielectric function’s imaginary part is illustrated in Figure 4.8(b). The

imaginary function plays an important role in the analysis of optical absorption and

the crystal structure’s energy storage potential.

4.5.2 Optical conductivity

Figure 4.9: (a) Optical conductivity and (b) Absorption coefficient of cubic NaGeI3 as

a function of energy under various applied pressures.

Optical conductivity is the property of a material which interprets the relation be-

tween the induced current density in the material and the magnitued of the including

electric field for arbitrarily selected frequencies. In Figure 4.9(a) is illustrated the

optical conductivity as a function of energy. From the curve, it is observed that the

maximum conductivity peaks are obtained at 8 eV under various pressure and from

the energy point optical conductivity continuesly decreases as energy increase and

28



Results and discussion

also reaches zero for higher energy values.

4.5.3 Absorption coefficient

The absorption coefficient is mainly used to determine how far into a material light

of a particular wavelength can penetrate before it is absorbed. When a material has

low absorption coefficient, light is absorbed poorly and vice-versa. It depends on

the material and also on the wavelength of light which is being absorbed. In Figure

4.9(b) represents the absorption coefficient of NaGeI3 alloy. The attenuation of light

of a particular energy into a material is predicted by optical absorption coefficient

of the material. From Figure 4.9(b) also depict, the absorption peaks become more

sharper with high pressure such as 4 GPa.

4.5.4 Refractive index

Figure 4.10: (a) Refractive index and (b) Optical reflectivity of cubic NaGeI3 as a

function of energy under various applied pressures.

Refractive index of a material, also called index of refraction, which measures how

much path of light is bent when it enters that material. Since refractive indices are

inversely related to the bandgap, so the bandgap decreases as the refractive index

increases. The refractive index vs energy curve is illustrated in Figure 4.10(a),

in which the maximum peak of the refractive index appears at 2 eV and rises an

incremental application of hydrostatic pressure. It also infrom the energy value

index of refraction decreases and finally reaches zero at higher energies.
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4.5.5 Optical reflectivity

Reflectivity is another most important optical property of material measured while

light is incident on the surface of the material. The optical reflectivity plots rep-

resent that reflectivity increases with energy after 5.5 eV. when pressure increased

reflectivity also rises.It also show the reflectivity spcetrum being minimum in the

infrared and visible regions. From Figure 4.10(b), it also obivious that the maximum

reflectivity in the vacuum UV region at higher energies. The high optical reflectivity

represents the strong metallic characteristic of the NaGeI3 compound.

4.6 Thermoelectric characteristics

BoltzTraP computational code was used to predict the thermoelectric characteristics

of NaGeI3 alloy. To shorten environmental pollution and to avoid energy disasters,

thermoelectric materials are of great interest, transforming wasted heat into use-

ful electricity [59, 60]. Thermoelectric parameters, including electrical conductivity

(σ/τ) and thermal conductivity (κ/τ) as well as figure of merit (ZT) and Seebeck

coefficient (S), were calculated for NaGeI3. The mobility of charge carries have been

estimated in terms of the electrical conductivity (σ/τ), which was plotted in the

temperature range 100-1000 K, as depict in Figure 4.11(a). The magnitude of σ/τ

for NaGeI3 is increased with pressure, which indicates NaGeI3 is semiconductor. At

4 GPa pressure, the perovskite material NaGeI3 shows (σ/τ) higher conductivity.

This conductivity also increased linearly with the increased of temperature, which

also proved the semiconducting nature of the materials. Another part of the conduc-

tivity comes from lattice vibration and thermal agitation, which is called thermal

conductivity (κ/τ), and that is illustrated in Figure 4.11(b). Thermally agitated

lattice vibrations create phonon waves. The rate of increase of κ/τ is faster than

σ/τ with temperature. The increases in the value of κ/τ with temperature indicates

that at a higher temperature more lattice vibrations are generated, which causes an

increase in κ/τ [60]. Since the value of κ/τ for NaGeI3 is of the order of 1014, this

reveals the suitability of this composition for thermoelectric device applications.
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Figure 4.11: The calculated thermoelectric properties of NaGeI3 (a) electrical conduc-

tivity (σ/τ), (b) thermal conductivity (κ/τ), (c) Seebeck coefficient (S), (d) figure of merit

(ZT) and (e) power factor (PF) under various applied pressures.

The Seebeck coefficient (S) is used to find the potential difference that can occur

between the contacts of dissimilar metals as a function of temperature change, which

is shown in Figure 4.11(c). The positive values of S for NaGeI3 indicates that

positive charge carriers are the majority charge carriers of the material. The seebeck

coefficient increases with temperature, but at high temperature it decreases due to

the presence of thermally excited minority carriers. From Figure 4.11(c) depict

that the value of S reduces with the incremental applications of pressure. The

power factor (PF) is another important thermoelectric parameter that is used to

determine the thermoelectric performance of any materials and this is calculated by
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the expression PF =σS2. The temperature dependent variation of PF is depict in

Figure 4.11(e). As the temperature increases, the power factor (PF) at all pressures

increase and reach the maximum value at 1000 K.

Another important factor to estimate the actual thermoelectric efficiency of the

studied compound, a dimensionless parameter labeled as figure of merit i.e., ZT

= (σS2/ K) was used to assess their thermoelectric performance. The parameters

σ, S, and K represents electrical conductivity, Seebeck coefficient and thermal con-

ductivity, respectively. The variation of ZT for the NaGeI3 perovskite halid in the

temperature range 100-1000 K under several pressure, which is illustrate in Figure

4.11(d). For NaGeI3, the value of figure of merit decreases with temperature under

pressure except 4 GPa. At different hydrostatic pressure, NaGeI3 alloy shows that

with pressure the value of ZT also increases, but at 2 GPa the perovskite material

NaGeI3 shows some different behavior that pressure first ZT decreases with temper-

ature but at 400 K it increases continuously with temperature up to 1000 K. This

pressure shows some different nature for NaGeI3 alloy.
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Chapter 5

Conclusions

The structural, electronic, optical, and thermoelectric properties of Ge-based halide

NaGeI3 perovskite have been investigated using the WIEN2k package within the

framework of DFT under various hydrostatic pressures to enhance our understand-

ing of the systems and evaluate the impact of pressure. The corresponding lattice

parameters of NaGeI3 at ambient pressure are 5.91 Å. The observed direct energy

band gap is 0.46 eV, calculated by the PBE-GGA functional, and 0.49 eV, calculated

by the TB-mBJ functional. The material’s band gap reduces with incremental pres-

sure, leading to a metallic transition from its semiconducting nature. The computed

density of states reveals the energy band gap. The charge density aids in under-

standing the chemical bonding in NaGeI3, maintaining ionic and covalent bonds

Na-I and Ge-I, respectively. Pressure induction significantly increases the optical

conductivity and optical absorption of NaGeI3, making it suitable for optoelectronic

devices. The computed thermoelectric properties under hydrostatic pressure, using

the BoltzTraP code, reveal that as pressure rises, electrical conductivity, thermal

conductivity, and power factor increase, while the Seebeck coefficient and figure of

merit decrease. In conclusion, this study elucidates the pressure-induced transfor-

mations in NaGeI3 perovskite, unveiling its potential for optoelectronic applications

with enhanced structural, electronic, and optical properties.
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[53] T. Flieÿbach. Mechanik: Lehrbuch zur theoretischen physik i (german). Spek-

trum, 2009.
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