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Abstract

The full-potential linearized augmented plane wave (FP-LAPW) method based on

density functional theory (DFT) is employed to investigate the structural, electronic,

optical, and thermoelectric properties of NaGeCl3 under various hydrostatic pres-

sures, ranging from 0 to 8 GPa. At ambient pressure, the observed band gap is 1.17

eV, determined using the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential.

This material exhibits a direct R→ R energy band gap, indicating semiconducting

behavior at ambient pressure. The band gap decreases with increasing pressure,

and at 8 GPa, the material transitions to a metallic state. Optical properties are

explored by computing dielectric functions, reflectivity, optical conductivity, refrac-

tive index, absorption coefficient, extinction coefficient, and electron energy loss.

Thermoelectric properties, calculated using the BoltzTraP code, include electrical

conductivity, thermal conductivity, Seebeck coefficient, power factor, and figure of

merit. Our findings suggest that the examined material holds potential for use in

developing lead-free perovskite solar cells and other optoelectronic applications.
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Chapter 1

Introduction

In the last decade, many researchers have been examining perovskite materials

due to their potential applications in many industrial and technical fields such as

photovoltaic, optoelectronic and thermoelectric devices [1–6]. Even though lead-

containing compounds have demonstrated a lot of promise for photoluminescence

applications [7], they are dangerous and toxic. The scientific community is focusing

on alternative lead-free halide perovskites [8–13], leading to extensive investigations

into their structural, electronic and optical properties. This detailed exploration

aims to enhance our comprehension of the challenges associated with material ap-

plications.

The cubic perovskites general formula is ABX3, where A and B is a cation and X is a

anion. According to recent research, Ge-halide perovskites [6,14–16] offer remarkable

qualities that make them ideal for a variety of uses, including solar cells. To analyze

various physical properties of cubic perovskite, the first-principles calculations have

been performed [17–20]. The application of external hydrostatic pressure is a simple

and effective process that can modify the band gap of perovskites materials [20–29]

which has an impact on the materials optical and electrical characteristics.

A lot of research has previously been done on the impact of hydrostatic pressure
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Introduction

on the physical properties of lead-free tin and germanium-based cubic halide per-

ovskites CsBX3(B = Sn, Ge; X= Cl, Br) [25–29]. Making lead-free, non-toxic halide

perovskite is a fundamental issue in commercializing perovskite solar cells. In the

visible energy range, Hassan et al. observed that the indirect band gap for RbTaO3

widens and turns direct at 75 GPa, suggesting possible optoelectronic uses [30]. They

observed that thermoelectric characteristics of RbTaO3 at 0 and 75 GPa might po-

tentially be applied in thermoelectric devices. According to Kholil et al, Fe-doped

CsSnCl3 shows higher potential for usage in solar cells and other photoelectric ad-

vancements [31]. Khan et al. reported that the perovskite compounds RbSnCl3,

RbSnBr3, KSnCl3, and KSnBr3 have promising electrical and optical characteris-

tics, suggesting their potential utilization in photovoltaic and other optoelectronic

applications [32]. Md Borhanul Asfia et al. investigated pressure induced band

gap shifting from ultra-violet to visible region of RbSrCl3 perovskite [33]. They

reported that at 150 GPa produced pressure, the band gap value of RbSrCl3 drops

to 2.09 eV, making it appropriate for use in optoelectronic devices. Mohammad

Abdur Rashid et al. investigated the metallic behavior of semiconducting lead-free

halide perovskites RbSnX3 (X, Cl, Br) under pressure. They observed that these

materials under pressure are more likely to be used in optoelectronic applications

than zero pressure systems. Also, the optical functions suggest that the studied

compound could be used in microelectronics, integrated circuits, OLEDs, QLEDs,

waveguides, and surgical instruments. Furthermore, the optical properties indicate

that the compound under study may find application in integrated circuits, waveg-

uides, OLEDs, QLEDs, microelectronics, and surgical equipment [34]. In this work,

we are inerested to investigate the structural, electronic, optical and thermoelectric

properties of NaGeCl3 for photovoltaic and optoelectronic applications.

This report is divided into five chapter. We begin with a brief introduction and

motivation of the current work of investigated compound NaGeCl3. We discuss in

chapter 2 and 3 about the basic quantum mechanics and density functional theory

respectively. In chapter 4, we explained observed result and calculation which is

based on DFT. Finally in chapter 5 we present concluding summery of this work

and also discuss about the potential application of our system.
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Chapter 2

Basic quantum mechanics

2.1 Schrödinger equation

The Schrödinger equation is a linear partial differential equation that governs the

wave function of a quantum-mechanical system. The time-independent single par-

ticle Schrödinger equation can be written as [35],

Ĥψ(~r) = Êψ(~r). (2.1)

The Hamiltoninan for single particle is,

Ĥ = T̂ + V̂ = − ~2

2m
~∇2 + V (r). (2.2)

This equation leads to the time independent single particle Schrödinger equation as,

Êψ(~r) =

[
− ~2

2m
~∇2 + V (~r)

]
ψ(~r). (2.3)

For N particles in three dimensions, the Hamiltonian is,

Ĥ =
N∑
i=1

p̂2i
2mi

+ V (~r1, ~r2, . . . , ~rN). (2.4)
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Thus the time independent Schrödinger equation for N particle can be written as,

Êψ(~r1, ~r2, . . . , ~rN) =
N∑
i=1

p̂2i
2mi

+ V (~r1, ~r2, . . . , ~rN)ψ(~r1, ~r2, . . . , ~rN). (2.5)

2.2 The wave function

The first and most important postulates is that the state of a particle can be com-

pletely described by its (time-dependent) wave function. That means, it contains all

information about the particle′s state. For the sake of simplicity, we will discuss the

time indepedent wave. The physical interpretation for the square of the wave func-

tion as a probability density can be described by the Born probabilty interpretaion

which is a major principle of the Copenhagen interpretation of quantum mechanics,

|ψ(~r1, ~r2, . . . , ~rN)|2d~r1d~r2 . . . d~rN , (2.6)

equation(2.6) describes the probability that particles 1, 2, ..., N are located simul-

taneously in the corresponding volume element d~r1d~r2...d~rN . But we should also

consider for the case of two particle′s position are exchanged. The overall probabil-

ity density can not depend on such an exchange, i.e.

|ψ(~r1, ~r2, . . . , ~ri, ~rj, . . . , ~rN)|2 = |ψ(~r1, ~r2, . . . , ~rj, ~ri, . . . , ~rN)|2. (2.7)

When a particle is exchanged, then there will be only two possibilities for the be-

haviour of the wave function. As the first one is the symmetrical wave function, so

it doesn′t change due to such an exchange. This corresponds (particles with integer

or zero spin ). Another possibility is an anti-symmetrical wave function, where an

exchange of two particles causes a sign change, which corresponds to fermions (par-

ticles with half integer spin). The anti-symmetrical fermion wave function leads to

the Pauli principle, which states that no two electrons can occupy the same state,

whereas states means orbital and spin parts of the wave function [36]. The antisym-

metry principle can be seen as the quantum-mechanical formalization of Paulie′s
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theoretical ideas in the description of spectra [37]. For the probability interpreta-

tion, another consequence is the normalization of the wave function. If equation(2.8)

describes the probability of finding a particle in a volume element, then result will

gives as the probability of one, i.e. all particles must be found somewhere in space.

The normalization condition for the wave function is,

∫
d~r1

∫
d~r2 . . .

∫
d~rN |ψ(~r1, ~r2, . . . , ~rN)|2 = 1 (2.8)

For physical acceptable purpose, this condition is required. The wave functions must

be continuous over the full spatial range and squar integrable [38]. By calculating the

expectation values of operators with a wave functions, it provides the expectation

value of the corresponding observable for the wave function [39]. For an observable

O(~r1, ~r2, . . . , ~rN),

O = 〈O〉 =

∫
d~r1

∫
d~r2 . . .

∫
d~rNψ

∗(~r1, ~r2, . . . , ~rN)Ôψ(~r1, ~r2, . . . , ~rN). (2.9)

2.3 Born-Oppenheimer (BO)approximation

The Hamiltonian of a many body system consisting of nuclei and electrons can be

written as,

Htot = −
∑
I

~2

2MI

∇2
RI
−
∑
i

~2

2me

∇2
ri

+
1

2

∑
I,J
I 6=J

ZIZJe
2

|RI −RJ |

+
1

2

∑
i,j
i 6=j

e2

|ri − rj|
−
∑
I,i

ZIe
2

|RI − ri|
.

(2.10)

where the indexes I,J run on nuclei i and j on electrons, RJ and MJ and positions

and masses of nuclei, ri and me of the electrons, Zi the atomic number of nucleus I.

The first term is the kinetic energy of the nuclei, the second term is the kinetic energy

of the electrons, the third term is the potential energy of nucleus-nucleus Coulomb

interaction, the fourth term is the potential energy of electron-electron Coulomb
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interaction and the last term is the potential energy of nucleus-electron Coulomb

interaction. The time independent Schrödinger equation for the many-body system,

Htotψ({RI}, {ri}) = Eψ({RI}, {ri}). (2.11)

where, ψ({RI}, {ri}) is the total wavefunction of the system.

In principle, everything about the system is known if one can solve the above

Schrödinger equation. But in practice it is impossible. A so-called Born-Oppenheimer

(BO) approximation was made by Born and Oppenheimer [40] in 1927. As the nuclei

are much heavier than electrons, so the nuclei move much slower than the electrons.

Therefore, we can separate the movement of nuclei and electrons. Therefore we can

separate the movement of nuclei and electrons.

With the Born-Oppenheimer approximation equation(2.14)can be divided into two

separate Schrödinger equations:

He = −
∑
i

~2

2Me

∇2
ri

+
1

2

∑
I,J
I 6=J

ZIZJe
2

|RI −RJ |
+

1

2

∑
i,j
i 6=j

e2

|ri − rj|

−
∑
I,i

ZIe
2

|RI − ri|
,

(2.12)

and

[−
∑
I

~2

2MI

∇2
RI + V ({RI})]θ({RI}) = E ′θ({Ri}). (2.13)

The significance of the BO approximation is to separate the movement of electrons

and nuclei. The electrons are moving in a static external potential Vext(r) formed

by the nuclei which is the starting point of DFT.

2.4 The Hartree-Fock approach

In the spirit of the Born-Oppenheimer approximation, the electronic equation for

molecules that depends parametically on the nuclear co-ordinates, is approximated

using the Hartree-Fock method [41]. Hartree-Fock method is the method of approx-
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imation for the determination of the wave function and the energy of a quantum

many body system in a Schr”ødinger equation. Suppose that, ψ is approximated

as an antisymmetrized product of N orthonormal spin orbitals ψi(~r), each a prod-

uct of a spatial orbitals φk(~r) and a spin function σ(s) = α(s) or β(s), the Slater

determinant,

φHF =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(~x1) ψ2(~x1) · · · ψN(~x1)

ψ1(~x2) ψ2(~x2) · · · ψN(~x2)
...

...
. . .

...

ψ1(~xN) ψ2(~xN) · · · ψN(~xN)

∣∣∣∣∣∣∣∣∣∣∣∣
=

1√
N !
det[ψ1ψ2 · · ·ψN ].

(2.14)

A general expression for the Hartree-Fock energy is obtained by uses of the Slater

determinant.

〈ψHF |Ĥ|ψHF 〉 = EHF (2.15)

(
N∑
i=1

Hi +
1

2

N∑
i,j

Jij −Kij)ψHF = EHFψHF , (2.16)

where, the first term corresponds to the kinetic energy and the nucleus-electron

interactions. So, the single particle contribution of the Hamiltonian is written as,

Hi =

∫
ψ∗(~x)d~x[−1

2
∇2 + V (~x]ψi(~x)d~x. (2.17)

And the last term of equation(2.16) correspond to electron-electron interactions.

They are called Coulomb (Jij) and exchange integral (Kij). We can write this term

in the following way,

Jij =

∫ ∫
ψi(~x1)ψ

∗
j (~x1)

1

r12
ψ∗j (~x2)ψj(~x2)d~x1d~x2. (2.18)

Kij =

∫ ∫
ψ∗i (~x1)ψj(~x1)

1

r12
ψj(~x2)ψ

∗
j (~x2)d~x1d~x2. (2.19)

These integrals are all real and Jij ≥ Kij ≥ 0.
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2.4.1 Limitations and failings of the Hartree-Fock approach

Atoms as well as molecules can have an even or odd number of electrons. If the

number of electrons is even and all of them are located in double occupied spa-

tial orbitals, then φi is the compound in a single state and such systems are called

closed-shell systems. Compounds with an odd number of electrons as well as com-

pounds with single occupied orbitals, i.e. species with triplet or higher ground state,

are called open-shell system respectively. These two types of systems correspond to

two different approaches of the Hartree-Fock method. In the restricted HF-method

(RHF), all electrons are considered to be paired in orbitals whereas in the unre-

stricted HF (UHF)- method this limitation is lifted totally. It is possible to describe

open-shell systems with a RHF approach where only the single occupied orbitals

are excluded which is then called a restricted open-shell HF (ROHF) which is an

approach closer to reality but also more complex and therefore less popular than

UHF [42].

The size of the investigated system can also be a limiting factor for calculations.

Kohn states a number of M = p5 with 3 ≤ p ≤ 10 parameters for a result with

sufficient accuracy in the investigation of the H2 system [43]. For a system with N

= 100 (active) electrons the number of parameters rises to,

M = p3N = 3300to10300 ≈ 10150to10300. (2.20)

Since many electron can not be described entirely by a single Slater determinant,

the energy obtained by HF calculations is always larger than the exact ground state

energy. The most accurate energy obtainable by HF-methods is called the Hartree-

Fock-limit. The difference between EHF and Eexact is called the correlation energy

and can be denoted as [44],

EHF
corr = Emin − EHf . (2.21)

Despite the fact that Ecorr is usually small against Emin, as in the example of a N2
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molecule where,

EHF
corr = 14.9eV < 0.001 · Emin, (2.22)

it can have huge influence [45].

For instance, the experimental dissociation energy of the N2 molecule is,

Ediss = 9.9eV < Ecorr, (2.23)

which corresponds to a large contribution of the correlation energy to relative en-

ergies such as reaction energies which are particular interest in quantum chemistry.

The main contribution to the correlation energy arises from the mean field approx-

imation used in the HF-method. That means one electron moves in the average

field of the other ones, an approach which completely neglects the intrinsic correla-

tion of the electron movements. For better understanding purpose, one may picture

the repulsion of electrons at small distances which clearly cannot be covered by a

mean-field approach like the Hartree-Fock-method [42].

9



Chapter 3

Density functional theory

3.1 The electron density

The electron density (for N electrons) as the basic variables of density functional

theory is defined as,

n(r) = N
∑
s1

∫
dx2 . . .

∫
dxNψ

∗(x1,x2, . . . ,xN)ψ(x1,x2, . . . ,xN). (3.1)

So the wave function is dependent on spin and spatial coordinates. The integral

in the equation gives the probability that a particular electron with arbitrary spin

found in the volume element dr1. As the electrons are indistinguishable, N times the

integral gives the probability that any electron is found there. The other electrons

represented by the wave-function ψ(x1,x2, . . . ,xN) have arbitrary spin and spatial

coordinates [42]. If the spin coordinates are neglected, the electron density can be

expressed as measurable observable which is only dependent on spatial coordinate,

n(r) = N

∫
dr2 . . .

∫
drNψ

∗(r1, r2, . . . , rN)ψ(r1, r2, . . . , rN). (3.2)

10
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The total number of electron can be obtained by integrating the electron density

over the spatial variables,

N =

∫
drn(r). (3.3)

3.2 Thomas-Fermi-Dirac approximation

The predecessor to DFT was the Thomas-Fermi (TF) model proposed by Thomas

and Fermi in 1927 [46,47]. In this method, they used the electron density n(r) as the

basic variable instead of wave-function. The total energy of a system is an external

potential Vext(r) is written as a function of the electron density n(r) as:

ETF [n(r)] = A1

∫
n(r)

5
3dr +

∫
n(r)Vext(rdr) +

1

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′. (3.4)

Where, the first term is the kinetic energy of the non-interacting electrons in a

homogeneous electron gas (HEG) with A1 = 3
10

(3Π2)
2
3 in atomic units. The kinetic

energy density of a HEG is obtained by adding up of the free-electron energy state

εk = k2

2
up to the fermi wave vector kF = [3π2n(~r)]

1
3 as:

to[n(r)] =
2

(2π)3

∫ kF

0

k2

2
4πk2dk = A1n(r)

5
3 . (3.5)

The second term is the classical electrostatic energy of the nucleus-electron Coulomb

interaction. The Third term is the classical electrostatic Hartree energy approxi-

mated by the classical Coulomb repulsion between electrons. In 1930, Dirac ex-

tended the Thomas-Fermi method by adding a local exchange term A2

∫
n(r)

4
3dr to

equation(3.4) with A2 = −3
4
( 3
π
)
1
3 , which leads equation(3.5) to,

ETFD[n(r)] = A1

∫
n(r)

5
3dr +

∫
n(r)Vext(r)dr +

1

2

∫ ∫
n(r)n(r)′

|r− r′|
drdr′

+ A2

∫
n(r)

4
3dr.

(3.6)

The ground state density and energy can be obtained by minimizing the Thomas-

Fermi-Dirac equation(3.6) subject to conservation of the total number (N) of elec-
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trons. Now using Lagrange multiplier, the solution can be found as,

δ{ETED[n(r)]− µ(

∫
n(r)−N)} = 0, (3.7)

where, µ is a constant known as a lagrange multiplier, whose physical meaning is

the chemical potential. The equation(3.7) leads to Thomas-Fermi-Dirac equation,

5

3
A1n(r)

2
3 + Vext(r) +

∫ ∫
n(r)n(r)′

|r− r′
dr′ +

4

3
A2n(r)

1
3 − µ = 0, (3.8)

this can be solved directly to obtain the ground state density. Althogh it is not good

enough to describe electrons in matter.

3.3 The Hohenberg-Kohn theorems

DFT was proven to be an exact theory of many-body systems by Hohenberg and

Kohn in 1964 [48]. It applies not only to condensed-matter systems of electrons

with fixed nuclei, but also more to any system of interacting particles in an external

potential Vext(r). The theory is based upon two theorem.

3.3.1 The HK theorem 1

The ground state particle density n(r) of a system of interacting particles in an

external potential Vext(r) uniquely determines the external potential Vext(r), except

for a constant. So, the ground state particle density determines the full Hamiltonian,

except for a constant shift of the energy. In principle, all the states including ground

and excited states of the many-body wave functions can be calculated. This means

that the ground state particle density uniquely determines all properties of the

system completely.

Proof of the HK theorem 1:

Here, we will only consider the ground state of the system is non-degenerate. Also,

the system is valid for degenerate ground state. The proof is based on minimum

energy principle. Suppose there are two different external potential Vext(r) and
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Vext(r
′) which differ by more than a constant and lead to the same ground state

density n0(r), but different ground state wave function ψ and ψ′ with Ĥψ = Ĥψ′.

Then the expression,

E0 < 〈ψ′|Ĥ|ψ′〉

< 〈ψ′|Ĥ ′|ψ′〉+ 〈ψ′|Ĥ − Ĥ ′|ψ′〉

< E ′0 +

∫
n0(r)[Vext(r)− V ′ext(r)]dr,

(3.9)

similarly,

E ′0 < 〈ψ|Ĥ ′|ψ〉

< 〈ψ|Ĥ|ψ〉 + 〈ψ|Ĥ ′ − Ĥ|ψ′〉

< E0 +

∫
n0(r)[V

′
ext(r)− Vext(r)]dr.

(3.10)

Adding equation(3.9) and (3.10) lead to the contradiction,

E ′0 + E < E0 + E ′0. (3.11)

Hence, no two different external potentials Vext(r), can give rise to the same ground

state density n0(r), i.e. the ground state density determines the external potential

Vext(r), except for a constant.

3.3.2 The HK theorem 2

There exist an universal functional F [n(r)] of the density, independent of exter-

nal potential Vext(r), such that the global minimum value of the energy functional

E[n(r)] ≡ T [n(r)] + Eint[n(r)] is the exact ground state energy of the system and

and the exact ground state density n0(r) minimizes the functional. Thus the exact

ground state energy and density are fully determined by the functional E[n(r)].

Proof of the HK theorem 2:

The universal functional F [n(r)] can be written as,

F [n(r)] ≡ T [n(r)] + Eint[n(r)], (3.12)
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where, T [n(r)] is the kinetic energy and Eint[n(r)] is the interaction energy of the

particles. According to variational principle, for any wave function ψ′, the energy

functional E[ψ′]:

E[ψ′] = 〈ψ′|T̂ + V̂int + V̂ext|ψ′〉 (3.13)

has minimum value only when ψ′ is the ground state wave function ψ0, with the

constraint that the total number of the particles is conserved. According to HK

theorem 1, ψ′ must correspond to a ground state with particle functional of n′(r)

and external potential V ′ext(r), then E[ψ′] is a functional of n′(r). According to

variational principle:

E[ψ′] ≡ 〈ψ′|T̂ + V̂int + V̂ext|ψ′〉 = E[n′(r)]

=

∫
n′(r)V ′(r)dr > E[ψ0]

=

∫
n0(r)dr + F [n0(r]

= E[n0r].

(3.14)

Thus the energy functional E[n(r)] ≡
∫
n(r)V ′ext(r)dr + F [n(r)] evaluated for the

correct ground state density n0(r) is indeed lower than the value of this functional

for any other density n(r). Therefore by minimizing the total energy functional of

the system with respect to variations in the density n(r), one would find the exact

ground state density and energy.

3.4 The Kohn-Sham (KS) equations

The Kohn-Sham approach is to replace the difficult interacting many-body system

obeying the Hamiltonian equation(2.10) with a different auxiliary system that can

be solved more easily. Since there is no unique prescription for choosing the simpler

auxiliary system, this is an ansartz that rephrases the issues [49]. Kohn and Sham

proposed that ground state density of the original interacting system is equal to

that of some choosen noninteracting system. The most desirable way in which

quantities can be calculated for problems without an exact analytical solution is

one that allows iterations [39]. An early example of an iterative approach are the

14
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self-consistent single particle Hartree equations. Hartree′s approximation assumes

that every electron moves in an effective single-particle potential of the form,

νH(r) = − Z
|r|

+

∫
n(r)

|(r)− (r′)
dr. (3.15)

The first term is an attractive Coulomb potential of a nucleus with atomic number Z,

whereas the intgral term corresponds to the potential caused by the mean electron

density distribution n(r). The mean density can be denoted in terms of the single

particle wavefunctions,

n(r) =
M∑
j=1

|φj(r)|2. (3.16)

As electron-electron interactions are taken into account in the potential term, so

the N-electron and 3-dimensional Schrödinger equation can be replaced by N 3-

demensional single particle equations for electrons moving in an effective potential:

[−1

2
∇2 + νH(r)]φj(r) = εjφj(r). (3.17)

To solve these self consistent Hartree-equation iteratively an electron density n(r)

and subsequently a potential νH(r) are defined, which is then used to solve equation

(3.17) for the chosen wave function. Since the framework of Hohenberg and Kohn is

formally exact, an extraction of the Hartree equations from their variational principle

for the energy should provide even improvement and practically useful formulation

of the second theorem [43]. So, kohn and Sham investigated the density functional

theory applied to a system of N non-interacting electrons in an external potential,

which is similar to Hartree′s approach.

Now, the expression for the energy of such a system is of the form,

Eν(r)[n
′(r)] ≡

∫
ν(r)[n′(r)]d|r + Ts[n

′(r)] ≥ E (3.18)

where, n′(r) ν-representable density for non-interacting electrons and Ts[n
′(r)] the

kinetic energy of those non-interacting electrons [43]. Construction of Euler-Lagrange
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equation for the non-interacting case equation(3.18) with density is,

δEν [n
′(r)] ≡

∫
δn′(r)[ν(r) +

δ

δn′(r)
Ts[n

′(r)]|n′(r)=n(r) − ε]dr = 0 (3.19)

with n′(r), the exact ground state density for the potential ν(r), and the Lagrangian

multiplier ε to ensure particle density conservation. For a system of non-interacting

electrons, the total ground state energy and particle density can be denoted as the

sums,

E =
N∑
j=1

εj (3.20)

and

n(r) =
N∑
j=1

|φj(r)|2 (3.21)

Also, Kohn and Sham used the universal functional as an alternative formulation,

F [n′(r)] ≡ Ts[n
′(r)] +

1

2

∫
[n′(r)][n′(r)]

|r− r′
drdr′ + Exc[n

′(r)]. (3.22)

Here, Ts[n
′(r)] is the kinetic energy functional of non-interacting electrons and the

second term is the Hartree term which describes the electrostatic self-repulsion of

the electron density. The last term is the exchange-correlation term. Construction

of Euler-Lagrange equations for the interacting case,

δEν [n
′(r)] ≡ δn′(r)[νeff (r) +

δ

δn′(r)
Ts[n

′(r)]|n′(r)=n(r) − ε]dr = 0 (3.23)

with

νeff (r) ≡ +

∫
[n(r)]

|r− r′|
+ νxc(r) (3.24)

and functional derivative,

νxc(r) ≡ δ

δn′(r)
Exc[n

′(r)]|n′(r)=n(r). (3.25)

Whereas the Euler-Lagrange equation resembles equation(3.18) up to the poten-

tial term. That′s why the minimizing density can be calculated in a way similar

to the Hartree-approach described in equation(3.15) to (3.17). The corresponding
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equations are the single-particle Schrödinger equation,

[−1

2
∇2 + νeff (r)]φj(r) = εjφj(r) j = 1, . . . , N (3.26)

as well as the defining equation for the particle density,

n(r) =
M∑
j=1

|φj(r)|2 (3.27)

which form together with the effective potential νeff (r) in equation(3.24) the self-

consistent Kohn-Sham Equation [43]. The accurate ground state energy can be

expressed as,

E =
∑
j

εj + Exc[n(r)]−
∫
νxc(r)n(r)dν − 1

2

∫
[n′(r)][n′(r)]

|r− r′|
drdr′. (3.28)

This equation can be seen as the generalization of the energy expression obtained

with the Hartree-approach.

Similar to the Hohenberg-Kohn theorems, also equation(3.26) to (3.28) are formally

exact, that means if the exact Exc[n(r)] and νxc[n(r)] would be used, one would

obtain the exact solution. Indeed Kohn-Sham approach has led to very useful ap-

proximations that are now the basis of most calculations that attepmt to make first

principles or ab-initio prediction for the properties of condensed matter and large

molecular systems [49].

Solving Procedure of Kohn-Sham equation:

Kohn and Sham proposed the practical approximation method of ion state in the

monoelectron equation, which is the Kohn-Sham equation. So,

[− ~
2m
∇2 + Veff (r)]ψi(r) = εmeψi(r)] (3.29)

where, εme is the eigenvalue of the monoelectron equation, and Veff is the effective
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potential. The electron density n(r) is described as,

n(r) =
N∑
i=1

ψ∗i (r)ψi(r) (3.30)

Figure 3.1: Flow chart of solving Kohn-Sham equation

Figure(3.1) shows the the solving of kohn-Sham equation. Firstly, the optional n(r)

is applied. By employing the approximation such as local density approximation

(LDA) and the generalized gradient potential (GGA) for the exchange correlation

potenial, the effective potential Veff (r) is estimated. And by using Veff (r) the wave-

function ψ(r) is determined. Then ψ(r) is introduced into equation(3.30) to calculate

the n(r). This process is kept calculating until self-consistently converging [50].

In case of calculating the ion state of the solid such as a crystal, a unit cell structure

is effectively adopted which is periodically arranged and have the wave function that
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transfers with the real lattice vector R, is described as,

ψ(r) = ψ(r + R). (3.31)

This wave function is described by using the wave vector k.

ψj(r + R) = eikRψj(r). (3.32)

This is called as the Bloch theorem. Applying Bloch theorem to the DFT, the

potential energy of the unit crystal structure can be calculated under condition of

periodic boundary.

3.5 Exchange-correlation (XC) functionals

The exchange-correlation potential of the Kohn-Sham density functional scheme is

the difference between the Fermi potential an effective potential appearing in the

one-electron Schrödinger equation for the square root of the electron density and

the Pauli potential. But the major problem in solving the Kohn-Sham equations

is that the true form of the exchange-correlation functional is not known. Two

main approximation methods have been implemented to approximate the exchange-

correlation functional. The simplest one known as the Local Density Approximations

(LDA). It is based on knowledge of the energy of the infinte 3D homogeneous electron

gas (HEG). For spin unpolarized system, the total exchange-correlation functional

can be written as,

ELDA
XC [n(r)] =

∫
n(r)εhomXC (n(r))dr

=

∫
n(r)[εhomX (n(r)) + εhomC (n(r))]dr

= ELDA
X [n(r)] + ELDA

C [n(r)].

(3.33)

And for spin polarized system it will be,

ELSDA
xc [n↑(r), n↓(r)] =

∫
n(r)εhomxc (n↑(r), n↓(r))dr (3.34)
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where, the Xc energy density εhomXC (n(r)) is a function of the density, and it is de-

composed into exchange energy density εhomX (n(r)) and correlation energy density

εhomC (n(r)) so that the XC energy functional is decomposed into exchange energy

functional ELDA
X (n(r)) and correlation functional ELDA

C (n(r)) linearly. The values

of εxc were calculated by Ceperly and Alder using Quantum Monte Carlo tech-

niques [51]. Although a gross approximation, LDA has been found to give good

results in a wide range of solid state systems, but it neglects the inhomogeneities of

the real charge density which is significantly different from the HEG result. This

leads to development of generalised-gradient approximations (GGAs) which include

density gradient corrections and higher spatial derivatives of the electron density

and gives better results than LDA in many cases. Three most widely used GGAs

are the forms proposed by Becke, Perdew et al. and Perdew, Burke and Enzerhof

(PBE). The definition of the XC energy functional of GGA is the generalized form

in equation(3.34) of LSDA to include corrections from density gradient ∇n(r) as,

EGGA
XC [n↑(r), n↓(r)] =

∫
n(r)εhomXC (n↑(r), n↓(r), |∇n↑(r), |∇n↓(r), . . .)d(r)

=

∫
n(r)εhomX FXC(n↑(r), n↓(r), |∇n↑(r), |∇n↓(r), . . .)d(r),

(3.35)

where, FXC is dimensionless and εhomXC (n(r)) is the exchange energy density of the

unpolarized HEG. Although GGA do not offer a consistent improvement over LDA

in all type of system, they have shown to improve on the LDA for calculations

of molecular structures and in representing weak inter-molecular bonds [52]. The

reason for the success of these approximations are not well understood, although

this may be partially attributed to the fact that both obey the sum rule for the

exchange-correlation hole in the electron density. The LDA and GGA give rise to a

systematic overestimation of the electronic binding energy.

TB-mBJ: Local Density Approximation (LDA) is the first and most well-known

approximation, which was followed by the Generalized Gradient Approximation

(GGA) and further approximations. These potentials fail to reproduce the gap

in semiconductors, but they do a fairly good job of reproducing the band structure

of even complex metallic systems. A modification of the exchange and correla-
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tion potential of Becke and Johnson (BJ) [53], the so-called Tran-Blaha modified

Becke-Johnson (TB-MBJ) with LDA potential was published by Blaha et al. [54].

Compared to the previous available potentials, the new potential reproduces the ex-

perimental gaps by several orders of magnitude with greater accuracy. The modified

TB-MBJ-LDA is,

V MBJ
x,σ (r) = cV BR

x,σ (r) + (3c− 2)
1

π

√
5

12

√
2tσ(r)

ρσ(r)
. (3.36)

Where, ρσ(r) is the density of states, tσ(r) is the kinetic energy density and V BR
x,σ (r)

is the Becke-Roussel potential (BR) [55]. The c stands for,

c = α + (β
1

Vcell

∫
d3r
|∇ρ(r)|
ρ(r)

)

1
2

, (3.37)

where, α and β are free parameters.

Comparing the mBJ-LDA potential to the results from the previous version of the

WIEN2k code, we find that it represents a significant improvement. Also For the

theoretical analysis of complicated systems containing semiconductor compounds,

such as surfaces, superlattices, and interfaces, this potential can be an invaluable

tool.
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Chapter 4

Result and discussion

4.1 Computational details

The full potential linearized augmented plane wave (FP-LAPW) method is the most

accurate methods which are incorporated in the framework of WIEN2k code, which

has been utilized for performing electronic structure calculations of crystals, which

is based on the density functional theory [56]. Based on first principle calculation,

the self-consistent schemes are utilized to investigate the electronic, optical char-

acteristics of NaGeCl3 structures. The WIEN2k package uses the LAPW method

to calculate LSDA total energy, spin densities, Kohn-Sham eigenvalues at nuclear

sites for a broad variety of space groups [57], which have a significant impact on the

accuracy of the final result. We use Perdew Burke Ernzerhof - generalized gradient

approximation (PBE-GGA) calculation to obtain optimized ground states of the ma-

terial. PBE-GGA understimates the electronic band gap, while Tran-Blaha modified

Becke-Johnson (TB-mBJ) with the local density approximation reproduces the band

gap of semiconductors with improved accuracy in good agreement for the optical

properties and band gap with experimental data. So, we calculate band structure,

DOS, and optical properties by using exchange-correlation potential: TB-mBJ-LDA.

The cut-off parameter RKmax = 7.0 is the maximum mutual lattice vector utilized
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in plane wave dilation and RMT is the smallest radius of muffin-tin sphere. The

energy convergence criteria was set to 10−5 Ry, and the charge convergence cri-

teria was set to 10−3e, where e is the charge of electron. Since a denser mesh of

k-points is required to calculate the density of states and transport properties, we

used 10× 10× 10 k-points in the Brillouin zone (BZ), which is 1000 k-points in the

total zone. Lastly, to examine the thermoelectric characteristics, Boltzmann theory

is utilized and employing in BoltzTraP code at a temperature span from 100 K to

1000 K in the steps of 100 K.

4.2 Structural properties

The cubic NaGeCl3 is the alkali halide perovskites that have the space group Pm3̄m

(221). The unit cell structure of the perovskites is illustrated in Fig. 4.1(a), which is

consists of five atoms (one formula unit). In the structure, the Na atom is located at

(0.0, 0.0, 0.0) Wyckoff position at the corner, the Ge atom is placed at (0.5, 0.5, 0.5)

Wyckoff position at the body center, and the Cl atom is residing at (0.0, 0.5, 0.5)

Wyckoff position at the face center. The WIEN2k software is used to visualize the

optimized crystal structure.
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Figure 4.1: (a) Crystal Structure of NaGeCl3 and (b) Total energy of NaGeCl3 compound

as a function of unit cell volume

We perform volume optimization to obtain lattice parameters of the ground state

configuration minimum energy value of the system. The optimization energy vs

unit cell volume of the compound is shown in Fig. 4.1(b), from which optimized

lattice parameters are extracted by fitting the data to the Birch-Murnaghan equation
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Table 4.1: The calculated lattice parameters (Å), Band gap of NaGeCl3 at different

hydrostatic pressure:

Pressures (GPa) Lattice parameters (Å) Band gap (eV)

0 5.25 1.17

2 5.14 0.73

4 5.06 0.38

6 5.00 0.15

8 4.95 0.00

of states [58]. These optimized lattice constants are then used to perform SCF

calculation to investigate their electronic properties. The effects of the induced

hydrostatic pressure on the lattice constant and band gap, are shown in Table 4.1.

As the pressure rises, the lattice constant will drop, that means the distance between

atoms decreases. Also induced pressure causes decreasing of band gap.

4.3 Electronic properties

The calculation of electronic properties of the investigated materials along with band

structure and density of states provide useful data to understand it’s optical prop-

erties. To compute DOS and band structure, we use mBJ potential which give an

accurate band gap as compared to PBE approximation with experimental data. At

0 GPa pressure, the calculated band gap obtianed by using PBE-GGA approxima-

tion is 0.836 eV but it is 1.17 eV is obtained by using mBJ-LDA approximation.

The electronic band structure, density of states and electron density are discussed

in this section.

4.3.1 Band Structures

The investigation of the electronic band structure is necessary to understand the

physical properties of crystalline solids which can provide information to describe

optical properties. The estimated band structure of NaGeCl3 under various pressure
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are shown in Fig. 4.2. The black horizontal dashed line at 0 eV represents the

Fermi level (Ef ) which is set to zero and the valence band (VB) and conduction

band (CB) are presented by colored lines below and above the EF , respectively.

Here, the calculation is done by defining highly symmetric points on the edge of the

Brillouin zone with sampling path of Γ−X−M −R−Γ−M . At ambient pressure,
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Figure 4.2: The calculated band Structures of NaGeCl3 under various applied pressures

NaGeCl3 has a direct band gap (Eg) of 1.17 eV at R point of the Brillouin zone.

When pressure is increased, the conduction band minima at R point begin to move

towards the EF and it causes lowering of Eg. At 8 GPa pressure Eg vanishes, that

means band gap reduced to zero because of inducing pressure and transforms from

semiconducting to conducting nature.
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4.3.2 Density of states

The density of states is the number of different states that electrons are permitted

to occupy at a given energy level, i.e. the number of electron states per unit volume

per unit energy. The total and partial DOS are calculated under various pressure

to find the electronic characteristic of NaGeCl3 which is shown in Fig. 4.3 by using

mBJ level of theory. The black vertical dashed line at 0 eV represents EF . Here,
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Figure 4.3: Total density of states (TDOS) and partial density of states (PDOS) of

NaGeCl3 under various applied pressure

at both non-pressurized and pressurized systems, the p-states of Cl atom dominate

close to the top of the valence bands of the compounds. And near the bottom of the

conduction band, the Ge-p orbital of the compounds makes the largest contribution

to the total DOS of the perovskites. However, increasing of pressure reduces the

contribution of Cl-p and Ge-p state. Furthermore, when pressure is incrementally

applied this figure shows the feature of diminishing Eg.
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4.3.3 Electron density

To investigate types of chemical bonds within the perovskites, the (100) and (101)

charge density of cubic NaGeCl3 under various applied pressure are plotted and

presented in Fig. 4.4. Charge density is the measure of electric charge per unit

area of a surface, or per unit volume of a body, which describes how much charge is

stored in a particular field.

Figure 4.4: Electron density of (100) and (101) of NaGeCl3 at 0, 2, 4 GPa pressure

At 0 GPa pressure, the charge distribution of Na and Cl atoms shows no overlap

along (100) plane, showing ionic bonding between these two atoms and a overlapping

27



Result and discussion

Figure 4.5: Electron density of (100) and (101) of NaGeCl3 at 6 and 8 GPa pressure

characteristics can be seen between Ge and Cl atoms along (101) plane, revealing

the covalent bonding. When pressure rises, the space between Na and Cl decreases

along the (100) plane without overlapping the charge distribution, preserving the

ionic character of Na-Cl bond. Also, overlapping between Ge and Cl atoms grows

more along (101) plane as pressure increases, and it will strengthing the covalent

nature of Ge-Cl bond.

4.4 Optical properties

To predict the performance of a material in optoelectronic device applications, opti-

cal functions should be understood. For that purpose, dielectric function, reflectiv-

ity, conductivity, refractive index, absorption coefficient, extinction coefficient and

electron energy loss of NaGeCl3 is investigated under various hydrostatic pressure.

These properties are calculated by using TB-mBJ potential.
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4.4.1 Dielectric function

The dielectric function demonstrates the dependency of a material′s optical proper-

ties on incident wavelength of light and it can be given by written as,

ε(ω) = ε1(ω) + iε2(ω) (4.1)

where, ε1(ω) and ε2(ω) are the real and imaginary components of the dielectric func-

tion respectively. The real part of dielectric function ε1(ω) measures the polarization

of incident photons, and the imaginary part of dielectric function ε2(ω) measures

the absorption of incident light photons by the material. The variation of ε1(ω) and
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Figure 4.6: The pressure induced plot of (a) Real dielectric function ε1(ω), (b) Imaginary

dielectric function ε2(ω), (c) Reflectivity, (d) Optical conductivity of NaGeCl3 as a function

of energy

ε2(ω) with and without pressure are illustrated in Fig. 4.6 (a) and (b) respectively.

The positive half is concerned with em wave propagation and the negative half is

concerned with em wave absorption. So, the value of ε1(0) increases with the in-

duced pressure which corresponds to the decrease in band gap and enhance device
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efficiency. The energy absorption can be explained by ε2(ω) which is related to the

band structure and density of states of the material. As pressure rises, the peak

value of ε2(ω) also increases. Peaks represent charge carriers shifting from filled to

empty bands. The ε2(ω) decreases from a peak value with increase in energy.

4.4.2 Reflectivity and Optical conductivity

The optical reflectivity (R) is measured when light is incident on the surface of the

material, which is used to detect the surface nature of a material, and it describes the

potential of a surface to reflect light. The observed plot of reflectivity is presented

in Fig. 4.6 (c). For energies exceeding 10 eV, the variation of reflectance under

pressure is quite significant. The lower reflectivity in the energy region increases the

potential of the metal halides to be used in optoelectronic devices.

Optical conductivity (σ) is a material property that describes the interaction be-

tween the induced current density in the material and the magnitude of the inducing

electric field for arbitrarily elected frequencies. It identifies the electromagnetic re-

sponse of a material. The graphical representation of optical conductivity as a func-

tion of energy is shown in Fig. 4.6 (d). Here, peaks get sharper with the application

of hydrostatic pressure.

4.4.3 Refractive index and absorption coefficient

The refractive index (η) of a material gives information about how much path of

light is bent when it enters that material. Fig. 4.7 (a) presents the plot of refractive

index as a function of energy under various applied pressure and this feature is very

similar to that of the real part of dielectric function ε1(ω) (Fig. 4.6 (a)). It can be

seen that at low energy limit, the refractive index has a high value.

The absorption coefficient (α) determines, how far into a material light with specific

wavelength can penetrate before being absorbed. The material with large absorp-

tion coefficient have the ability to absorb the incident light rapidly. In Fig. 4.7

(b) the graphical representation of absorption coefficient as a function of energy
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under various applied pressure is shown. The lowest energy for light absorption was

about 0 to 1 eV. This strong absorption implies that the material can be used in

optoelectronic applications.
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Figure 4.7: The pressure induced plot of (a) Refractive index, (b) Absorption coefficient,

(c) Extinction coefficient, (d) Electron energy loss of NaGeCl3 as a function of energy

4.4.4 Extinction coefficient and electron energy loss

The extinction coefficient is a characteristics that determines how strongly a species

absorbs or reflects light at a particular wavelength. In Fig. 4.7 (c) Extinction

coefficient vs energy curve is plotted at various induced pressure. It can be seen

from here the extinction coefficient increases with the increasing of energy. The

maximum value of extinction coefficient are found at high energy region.

In Fig. 4.7 (d), electron energy loss curve is plotted against energy under different

hydrostatic pressure, where the loss is increased as the energy increases. The electron

energy loss is an important factor which describes the energy loss of a fast moving

electron in a material. In visible region absorption is small, so number of collisions
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are small, hence electron energy loss is negligible. The opaqueness of the compounds

is provide by high peak in electron energy loss after 4 eV. As the absoption increases

beyond visible region, so due to increasing collision causes more electron energy loss.

4.5 Thermoelectric properties

To reduce environment pollution and to avoid energy disasters, thermoelectric mate-

rial are of great inerest for transforming wasted heat into useful electricity. Thermo-

electric parameters such as Seebeck coefficient (S), figure of merit (ZT ), power factor

(σS2/τ), electrical conductivity (σ/τ) and thermal conductivity (κe/τ) are plotted

against temperature under various hydrostatic pressure in Fig. 4.8. In evaluation of

the transport characteristics, measurement of these parameters are required. The

mobility of charge carriers is estimated in terms of the electric conductivity. The

magnitude of electric conductivity is increased when pressure rises. Another part

of conductivity comes from lattice vibration and thermal agitation, which is the

thermal conductivity. The rate of increase in thermal conductivity is faster than the

electrical conductivity. That means, at higher temperature more lattice vibrations

are generated.

The potential difference induced by the temperature gradient is called the Seebeck

coefficient.From figure we can see that, increasing temperature doesn′t affect largely

to the seebeck coefficient. The power factor is another thermoelectric parameter

that is used to determine the thermoelectric performance of any material. Power

factor increases with an increase of temperature, which demonstrates suitability of

this material for high temperature applications.

The thermoelectric performance (for power generation or cooling) depends on the

efficiency of the thermoelectric material for transforming heat into electricity. The

efficiency of a themoelectric material depends on the figure of merit ZT = (S2σT/κ).

For high efficiency, high electrical conductivity and low thermal conductivity is re-

quired. In Fig. 4.8 it can be seen that figure of merit curve increases with an

increases of pressure at 2 and 4 GPa but suddenly decreases at 6 and 8 GPa. So
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Figure 4.8: The pressure induced plot of (a) Electric conductivity, (b) Thermal conduc-

tivity, (c) Seebeck coefficient (d) Power factor, (e) Figure of merit of NaGeCl3 as a funtion

of temperature

working with below 6 GPa pressure will give good result. These observation indi-

cates that this compositions have potential for use in thermoelectric applications.
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Chapter 5

Conclusion

In this study, we investigated the structural, electronic, optical, and thermoelec-

tric properties of the lead-free halide perovskite NaGeCl3, utilizing the linearized

augmented plane wave (LAPW) method based on density functional theory (DFT).

Our findings reveal that NaGeCl3 perovskite adopts a cubic structure with the space

group Pm3̄m (221). The equilibrium lattice constant is determined to be 5.25 Å,

obtained from the total energy versus unit cell volume plot for the ground state at

zero pressure. At ambient pressure, the perovskite NaGeCl3 exhibits a direct band

gap of 1.17 eV, indicating its semiconducting nature. As pressure increases uni-

formly from 0 to 8 GPa, the direct band gap decreases from 1.17 to 0 eV, signifying

a transition to metallic behavior under that pressure. Additionally, the optical prop-

erties demonstrate a significant absorption coefficient in the visible region, effectively

tunable by hydrostatic pressure. The material also displays promising thermoelec-

tric properties, characterized by good Seebeck coefficients and power factors. The

obtained band gap value suggests the potential application of this material as an

absorber for photovoltaic applications.
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