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Abstract

By using density functional theory (DFT) as implemented in WIEN2k, we exam-

ine the structural, electronic, optical, and thermoelectric properties of NaGeBr3

perovskite under hydrostatic pressures ranging from 0 to 4 GPa. The structural

investigation of the cubic NaGeBr3 perovskite is determined by the Perdew Burke

Ernzerhof-Generalized Gradient Approximation (PBE-GGA) functional that reveals

the optimized lattice constant is 5.52 Å, which is good agreement with previous

study. We calculate electronic, optical and thermoelectric properties by using the

Trans Blaha-modified Becke Johnson (TB-mBJ) potential to obtain more accurate

energy band gap. Band gap becomes zero from 0.81 eV to 0.00 eV with the increment

of pressure from 0 GPa to 4 GPa, enhancing it’s conductivity. The optical response

of NaGeBr3 are inspected by computing absorption coefficient, complex dielectric

function, refractive index, reflectivity, extinction coefficient, electron energy loss,

and optical conductivity. Thermoelectric properties of NaGeBr3 are investigated in

terms of electrical conductivity, the Seebeck coefficient, power factor, thermal con-

ductivity by using the BoltzTraP code. NaGeBr3 is found to be have good potential

to be used in developing lead-free perovskite solar cells and other optoelectronic

applications.
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Chapter 1

Introduction

Over the decades, the use of photovoltaic (PV) and optoelectronic devices has in-

creased significantly [1–3]. Scientists are still looking for materials that will be

highly efficient for solar cells and other optoelectronic devices, which are environ-

ment friendly and affordable. In this concern, numerous investigations on cubic

halide perovskite compounds have been carried out. They have all the potential to

develop into innovative materials such as semiconductor [4, 5], half metal [6–8] and

insulator [9,10]. The halide perovskites are utilized in different fields of remarkable

applications like sensors [11], solar cells [12–14], superconductivity [15], piezoelec-

tricity [16, 17], diodes and transparent coatings [18, 19]. Most of these devices are

manufactured on a large scale for solar to fuel energy conversion [20–23].

Perovskites was originally discovered in 1939 by Gustav Rose, a Russian mineralogist

in a chunk of chlorite-rich skarn [24]. The general formula of the cubic perovskite is

ABX3, where A and B represent the cations and X (oxygen or halogen) is the an-

ion [25,26]. Most of the halide perovskites with excellent properties comprise of lead

(Pb) which is toxic and harmful for the environment [27–29]. As an alternative, lead-

free halide perovskites are capable of attracting the attention of scientists [30–33],

because of their nature friendly non-toxic features. Thus, perovskites based on Ge

have emerged as a possible alternative of lead (Pb), because they possess superior
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optical absorptivity and conductivity as compared to Pb-based perovskites [34]. An

overview of the computational analysis on the structural and electrical character-

istics of CsMgBr3 for all three phases was presented by Kaewmeechai et al. [35].

Mohammad Abdur Rashid et al. investigated the metallic behavior of semiconduct-

ing lead-free halide perovskites RbSnX3 (X , Cl, Br) under pressure. They observed

that the optical absorbance and conductivity of the perovskites are appropriate for

optoelectronic applications [30]. Recent studies have demonstrated that inorganic

halide perovskites, including AGeF3 (A = K, Rb), KGeX3 (X = Cl, Br, I), CsGeX3

(X = Cl, Br) exhibit a decrease in band gap under hydrostatic pressure, leading to

an enhancement in conductivity. Furthermore, pressure application can significantly

improve the optical characteristics of halide perovskites, improving their utility in

optoelectronic areas [36–42].

Therefore, we are motivated by the above work to investigate the structural, elec-

tronic, optical, and thermoelectric properties of the perovskite material NaGeBr3

at ambient and hydrostatic pressure to provide information on its potential appli-

cations in solar cells and other optoelectronic devices. The work is structured as

follows: an introduction is given in Chapter 1, and theoretical background is covered

in Chapter 2. Further, we have elaborately discussed the results in Chapter 3 and

the conclusion of the current study in Chapter 4.
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Chapter 2

Theoretical background

2.1 Schrödinger equation

The Schrödinger equation is a second order linear partial differential equation of

quantum mechanics for the study of microscopic events. In 1926, The Schrödinger

equation, developed by the Austrian scientist Erwin Schrödinger [43]. The en-

ergy operator, or Hamiltonian, is crucial in quantum mechanics because it uses the

Schrödinger equation to describe how the system change [44]. The time-independent

Schrödinger equation is the energy eigenvalue of the hamiltonian multiplied by the

wave function, leading the general eigenvalue equation as

Ĥψ(r) = Êψ(r), (2.1)

where Ĥ is the Hamiltonian operator, Ê is the energy and ψ is the wave function.

Using the Hamiltonian for a single particle

Ĥ = T̂ + V̂ = − }2

2m
~∇2 + V (r), (2.2)

3
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that results in the time-independent single-particle Schrödinger equation (non-relativistic)

i}
∂

∂r
ψ(r) =

[
− }2

2m
~∇2 + V (r)

]
ψ(r). (2.3)

The Hamiltonian in three-dimensions for N -particles

Ĥ =
N∑
i=1

pi
2

2mi

+ V (r1, r2, ...rN). (2.4)

The related Schrödinger equation is as follows:

i}
∂

∂r
ψ(r1, r2, ...rN) =

[ N∑
i=1

pi
2

2mi

+ V (r1, r2, ...rN)

]
ψ(r1, r2, ...rN). (2.5)

2.2 The wave function

A wave function is a mathematical representation of a particle’s quantum state as

a function of momentum, position, time and spin in quantum physics. It contains

all the information about the particle’s state. A wave function is represented by the

Greek letter ψ (psi). The probability of finding an electron within the matter-wave

may be explained using a wave function. This may be produced by incorporating

an imaginary number that is squared to give a real number solution resulting in an

electrons position.

Max Born developed a probabilistic interpretation of the wave function as a probabil-

ity density, which is a major principle of the Copenhagen interpretation of quantum

mechanics [45].

|ψ(r1, r2, ...rN)|2dr1, dr2, ...rN . (2.6)

The particles 1, 2, ..., N are all present at the same time in the corresponding volume

element dr1, dr2, ...drN which is the probability that is specified by equation (2.6).

If the positions of two particles are exchanged, the total probability density cannot

be affected. That is to written as,

|ψ(r1, r2, ...ri, rj, ...rN)|2 = |ψ(r1, r2, ...rj, ri, ...rN)|2. (2.7)
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The symmetrical and anti-symmetrical wave functions are two possible wavefunction

behaviours during a particle exchange. The symmetrical wave function remains

unchanged as a result of such exchange, which corresponds to bosons (integer or zero

spin). However, the anti-symmetrical wave function shifts it’s sign to correspond to

fermions (half-integer spin) [46]. Because electrons are fermions, in this text may

explore the anti-symmetric fermion wave function. The Pauli exclusion principle,

which states that no two electrons may occupy the same orbital, is followed by the

anti-symmetric fermion wave function. Another result of probability interpretation

is the normalization of the wave function [47]. A particle’s wave function must be

normalized. The probability of finding the particle somewhere in space is unity as

∫
dr1

∫
dr2...

∫
drN |ψ(r1, r2, ...rN |2 = 1. (2.8)

Eq.(2.8) is physically valid. Continuous and square-integrable wave functions are

required. In quantum physics, any wave function that is not continuous and square-

integrable has no physical meaning [48]. When we calculate the expectation values of

operators with a wave function, we get the expectation value of the corresponding

observable for that wavefunction, which is another important aspect of the wave

function. This may be expressed for an observable O(r1, r2, ...rN) as

O = 〈O〉 =

∫
dr1

∫
dr2

∫
drNψ

∗(r1, r2, ...rN)Ôψ(r1, r2, ...rN). (2.9)

2.3 Born-Oppenheimer (BO) approximation

The Schrödinger equation of a many-body system is

Htotψ({RI}, {ri}) = Eψ({RI}, {ri}). (2.10)

Where, Htot is the total Hamiltonian, E is the total energy and ψ({RI}, {ri}) is the

total wave function of the system. The total Hamiltonian of a many-body system

5
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consisting of nuclei and electrons can be written as

Ĥtot = −
∑
I

}2

2MI

~∇2
RI
−
∑
i

}2

2me

~∇2
ri

+
1

2

∑
I,J

ZIZJe
2

|RI −RJ |

+
1

2

∑
i,j

e2

|ri − rj|
−
∑
I,i

ZIe
2

|RI − ri|
,

(2.11)

where, the indexes I,J run on nuclei, i and j on electrons, RI and MI are po-

sition and mass of the nuclei, ri and me are position and mass of the electrons,

|RI −RJ |, |RI − ri| and |ri − rj| are represent the distance between the nucleus-

nucleus, nucleus-electron, and electron-electron.

As nuclei are significantly heavier than electrons (the mass of a proton is about

1836 times the mass of an electron), the electrons travel considerably more quickly

than the nuclei [49]. In that case, Born-Oppenheimer (BO) approximation was

proposed by Born and Oppenheimer in 1927. The Born-Oppenheimer approximation

is an assumption that it is possible to distinguish eq.(2.11) between the nuclear and

electronic motions of molecules. After applying Born-Oppenheimer approximation,

the Schrödinger equation of many body system is reduced as,

ĤBO = −
∑
i

}2

2me

~∇2
ri

+
1

2

∑
i,j

e2

|ri − rj|
−
∑
I,i

ZIe
2

|RI − ri|
. (2.12)

The BO approximation’s importance lies in it’s ability to distinguish between the

motion of electrons and nuclei. The starting point of DFT is the electron motion in

a static external potential Vext(r) created by the nucleus. Born and Huang expanded

the BO approximation, giving it the name Born-Huang (BH) approximation [50], to

account for more non-adiabatic effects in the electronic Hamiltonian than the BO

approximation did.

2.4 The Hartree-Fock (HF) approach

In the spirit of the Born-Oppenheimer approximation, The electronic equation for

molecules that depends parametrically on the nuclear co-ordinates is approximated
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using the Hartree-Fock method [45]. Hartree-Fock method is a method of approx-

imation for the determination of the wave function and the energy of a quantum

many-body system in a Schrödinger equation. Suppose that, ψ is approximated

as an antisymmetrized product of N orthonormal spin orbitals ψi(x), each a prod-

uct of a spatial orbital φk(r) and a spin function σ(s) = α(s) or β(s), the Slater

determinant,

φHF =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(x1) ψ2(x1) · · · ψN(x1)

ψ1(x2) ψ2(x2) · · · ψN(x2)
...

...
. . .

...

ψ1(xN) ψ2(xN) · · · ψN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.13)

=
1√
N !
det[ψ1ψ2 · · ·ψN ] (2.14)

A general expression for the Hartree-Fock energy is obtained by uses of the Slater

determinant.

〈ψHF |Ĥ|ψHF 〉 = EHF (2.15)

(
N∑
i=1

Hi +
1

2

N∑
i,j

Jij −Kij)ψHF = EHFψHF . (2.16)

Where, the first term corresponds to the kinetic energy and the nucleus-electron

interactions. So, the single particle contribution of the Hamiltonian is written as,

Ĥi =

∫
ψ∗(x)[−1

2
∇2 + V (x)]ψi(x)dx. (2.17)

And the last term of eq.(2.16) correspond to electron-electron interactions. They

are called Coulomb (Jij) and exchange integral (Kij). We can write this term in the

following way,

7
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Ĵij =

∫ ∫
ψi(x1)ψ

∗
j (x1)

1

r12
ψ∗j (x2)ψj(x2)dx1dx2. (2.18)

K̂ij =

∫ ∫
ψ∗i (x1)ψj(x1)

1

r12
ψj(x2)ψ

∗
j (x2)dx1dx2. (2.19)

These integrals are all real, and Ĵij ≥ K̂ij ≥ 0.

2.4.1 Limitation and failings of the Hartree-Fock (HF) ap-

proach

Molecules and atoms can both have an even or an odd number of electrons. The

compound is in a single state if the number of electrons is even and they are all

positioned in double-occupied spatial orbitals ψi. They are reffered to as closed-

shell systems. Both substances with one occupied orbital, or species with a triplet

or higher ground state, and substances with an odd number of electrons are referred

to be open-shell systems. These two types of systems relate to two distinct Hartree-

Fock approach. All electrons are assumed to be coupled in orbitals when using the

restricted HF approach (RHF), however this restriction is completely eliminated

when using the unrestricted HF method (UHF). RHFs may also be used to define

open-shell systems [51]. The size of the investigated system can also be a limiting

factor for calculations. Kohn states a number of M = p5 with 3p10 parameters for

a result with sufficient accuracy in the investigation of the H2 system [52]. For a

system with N = 100 (active) electrons the number of parameters rises to

M = p3N = 3300to10300 ≈ 10150to10300. (2.20)

Since a many electron wave function cannot be described entirely by a single Slater

determinant, the energy obtained by HF calculations is always larger than the exact

ground state energy. The most accurate energy obtainable by HF-methods is called

the Hartree-Fock-limit. The difference between EHF and Eexact is called correlation

8
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energy and can be denoted as [53]

EHF
corr = Emin − EHF . (2.21)

Despite the fact that Ecorr is usually small against Emin, as in the example of a N2

molecule where

EHF
corr = 14.9eV < 0.001.Emin, (2.22)

it can have a huge influence [54]. For instance, the experimental dissociation energy

of the N2 molecule is

Ediss = 9.9eV < Ecorr, (2.23)

which corresponds to a large contribution of the correlation energy to relative ener-

gies such as reaction energies which are of particular interest in quantum chemistry.

The main contribution to the correlation energy arises from the mean field approxi-

mation used in the HF-method. That means one electron moves in the average field

of the other ones, an approach which completely neglects the intrinsic correlation of

the electron movements. To get a better understanding what that means, one may

picture the repulsion of electrons at small distances which clearly cannot be covered

by a mean-field approach like the Hartree-Fock method.

2.5 The electron density

The electron density (for N electrons) as the basic variable of density fuctional

theory is defined as [55]

n(r) = N
∑
s1

∫
dx2...

∫
dxNψ

∗(x1,x2, ...xN)ψ(x1,x2, ...,xN). (2.24)

The electron density can also be described as a measurably obserable quantity based

simply on spatial coordinates if the spin coordinates are further neglected [56]

n(r) = N

∫
dr2...

∫
drNψ

∗(r1, r2, ..., rN)ψ(r1, r2, ..., rN) (2.25)

9
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with, for instance, an X-ray diffraction measurement.

It must be confirmed that a method employing the electron density as a variable

actually contains all necessary information about the system before it is presented.

That entails, specifically, that it must include details on the electron number n as

well as the external potential denoted by V̂ . By integrating the electron density

over the spatial variables, one may get the total number of electrons.

N =

∫
drn(r). (2.26)

2.6 Thomas-Fermi-Dirac approximation

In 1927, the predecessor to DFT was the Thomas-Fermi (TF) model proposed by

Thomas [57] and Fermi [58]. They used the electron density n(r) as the basic variable

instead of the wavefunction. The total energy of a system in an external potential

Vext(r) is written as a functional of the electron density Vext(r) as:

ETF [n(r)] = A1

∫
n(r)

5
3dr +

∫
n(r)Vext(r)dr +

1

2

∫ ∫
n(r)n(r)′

|r− r′|
drdr′. (2.27)

Where the first term is the kinetic energy of the non-interacting electrons in homo-

geneous electron gas (HEG) with A1 = 3
10

(3π2)
2
3 in the free electron energy state

εk = k2

2
up to the Fermi wave vector kF = [3π2n(r)]

1
3 as:

t0[n(r)] =
2

(2π)3

∫ kF

0

k2

2
4πk2dk

= Aln(r)
5
3

The classical electrostatic energy of the Coulomb interaction between the nucleus

and electron is the second term. The classical Coulomb repulsion between electrons,

which approximates the classical electrostatic Hartree energy, is the third term.

The exchange and correlation between electrons were neglected in the original TF

approach. In 1930, Dirac [59] extended the Thomas-Fermi method by adding a local

exchange term A2

∫
n(r)

4
3dr to eq.(2.27) with A2 = −3

4
( 3
π
)
1
3 , which leads eq.(2.27)

10
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to

ETFD[n(r)] = A1

∫
n(r)

5
3dr +

∫
n(r)Vext(r)dr

+
1

2

∫ ∫
n(r)n(r)′

|r− r′|
drdr′ + A2

∫
n(r)

4
3dr.

(2.28)

When the total number of electrons (N) is conserved, The Thomas-Fermi-Dirac

eq.(2.28) can be minimized to get the ground state density and energy. In the

stationary condition, the solution can be found by applying the Lagrange multiplier

method.

δ{ETFD[n(r)]− µ(

∫
n(r)dr−N)} = 0, (2.29)

where µ is a constant known as a lagrange multipliers, whose physical meaning is

the chemical potential (or Fermi energy at T = 0 K). Eq.(2.29) leads to the Thomas-

Fermi-Dirac equation,

5

4
A1n(r)

2
3 + Vext(r) +

∫
n(r′)

|r− r′|
dr′ +

4

3
A2n(r)

1
3 − µ = 0 (2.30)

which can be solved directly to obtain the ground state density.

2.7 The Hohenberg-Kohn (HK) theorems

Density functional theory (DFT) is the most widely used many-body approach for

electronic structure calculations and has significantly impacted on modern science

and engineering. DFT is made possible by the existance of two ingeniously sim-

ple theorems put forward and proven by Hohenberg and Kohn in 1964 [60]. The

Hohenberg-Kohn theorems which have become a basic tool for the study of electronic

structure of matter. Basically, any system that involves electron.

2.7.1 The HK theorem I

For any system of interacting particles in an external potential Vext(r), the density

is uniquely determined (in other words, the external potential is a unique functional

of the density).

11
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Proof of the HK theorem I

Assume that there exist two potentials Vext(r) and V ′ext(r) differing by more than a

constant and giving rise to the same ground state density, n0(r). Obviously, Vext(r)

and V ′ext(r) belong to distinct Hamiltonians Ĥ and Ĥ ′, which give rise to distinct

wavefunctions ψ and ψ′. Because of the variational principle, no wave function can

give an energy that is less than the energy of ψ for Ĥ. That is

E0 < 〈ψ′|Ĥ|ψ′〉

< 〈ψ′|Ĥ ′|ψ′〉+ 〈ψ′|Ĥ − Ĥ ′|ψ′〉

< E ′0 +

∫
n0(r)[Vext(r)− V ′ext(r)]dr

(2.31)

Similarly

E ′0 < 〈ψ|Ĥ|ψ〉

< 〈ψ|Ĥ|ψ〉+ 〈ψ|Ĥ ′ − Ĥ|ψ〉

< E0 +

∫
n0(r)[V ′ext(r)− Vext(r)]dr.

(2.32)

Adding eq.(2.31) and eq.(2.32) lead to the contradiction

E0 + E ′0 < E0 + E ′0 (2.33)

which is clearly a contradiction. Thus, the theorem has been proven by reduction

absurdum.

2.7.2 The HK theorem II

A universal functional F [n(r)] for the energy E[ψ′] can be defined in terms of the

density, The exact ground state is the global minimum value of this functional.

Proof of the HK theorem II

Since the external potential is uniquely determined by the density and since the

potential in turn uniquely (except in degenerate situations) determines the ground

state wavefunction, all the other observables of the system such as kinetic energy are
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uniquely determined. Then one may write the energy as a functional of the density.

The universal functional F [n(r)] can be written as

F [n(r)] ≡ T [n(r)] + Eint[n(r)] (2.34)

where T [n(r)] is the kinetic energy and Eint[n(r)] is the interaction energy of the

particles. According to variational principle, for any wavefunction ψ′, the energy

functional E[ψ′]:

E[ψ′] ≡ 〈ψ′|T̂ + V̂int + V̂ext|ψ′〉 (2.35)

has its global minimum value only when ψ′ is the ground state wavefunction ψ0

with the constraint that the total number of the particle is conserved. According

to HK theorem I, ψ′ must correspond to a ground state with particle density n′(r)

and external potential V ′ext(r), then E[ψ′] is a functional of n′(r). According to

variational principle:

E[ψ′] ≡ 〈ψ′|T̂ + V̂int + V̂ext|ψ′〉

= E[n′(r)]

=

∫
n′(r)V ′ext(r)dr + F [n′(r)]

> E[ψ0]

=

∫
n0(r)Vext(r)dr + F [n0(r)]

= E[n0(r)]

(2.36)

Thus the energy functional E[ψ′] ≡
∫
n(r)Vext(r)dr + F [n(r)] evaluated for the

correct ground state density n0(r) is indeed lower than the value of this functional

for any other density n(r). Therefore by minimizing the total energy functional of

the system with respect to variations in the density n(r), one would find the exact

ground state density and energy [61]. This functional only determines ground state

properties, it doesn’t provide any guidance concerning excited states.

13
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2.8 The Kohn-Sham (KS) equations

An inventive indirect method of monoelectronic equation for the kinetic-energy

functional T [n(r)] was developed by Kohn and Sham in 1965 as Kohn-Sham (KS)

method [62]. Kohn and Sham proposed introducing orbitals into the problem in such

a way that the kinetic energy can be computed simply to good accuracy, leaving a

small residual correction that is handled separately. It is convenient to begin with

the exact formula for the ground-state kinetic energy,

T =
N∑
i

ai〈ψi| −
1

2
∇2|ψi〉 (2.37)

where, ψi and ai respectively, natural spin orbitals and their occupation numbers.

We are assured from the Hohenberg-Kohn theory that this T is a functional of the

total electron density.

n(r) =
N∑
i

ai|ψi(r)|2 (2.38)

Kohn and Sham showed that one can built a theory using simpler formulas, namely,

Ts[n] =
N∑
i

〈ψi| −
1

2
∇2|ψi〉 (2.39)

and

n(r) =
N∑
i

|ψi(r)|2 (2.40)

This representation of kinetic energy and density holds true for the determinantal

wave function that exactly describes N non-interacting electrons. In analogy with

the Hohenberg-Kohn defination of the universal functional FHK [n], Kohn and Sham

invoked a corresponding non-interacting reference system, with the Hamiltonian,

Ĥs =
N∑
i

(
1

2
∇2
i ) +

N∑
i

νs(r) (2.41)

in which there are no electron-electron repulsion terms and for which the ground

state electron energy is exactly n. For this system, there will be an exact determi-

14



Theoretical background

nantal ground-state wave function,

ψs =
1√
N !
det[ψ1ψ2 . . . ψN ] (2.42)

where ψi are the N lowest eigenstates of the one-electron Hamiltonian ĥs:

ĥsψi = [−1

2
∇2 + νs(r)]ψi = εmeψi (2.43)

The kinetic energy is Ts(n) given by eq.(2.39).

Ts[n] = 〈ψs|
N∑
i

(−1

2
∇2
i )|ψi〉 =

N∑
i=1

〈ψi| −
1

2
∇2|ψi〉 (2.44)

The quantity Ts[n], although uniquely defined for any density, is still not the exact

kinetic energy functional. Kohn-Sham set up a problem of interest in such a way

that Ts[n] is it’s kinetic energy component. To produce the desired separation out

of Ts[n] as the kinetic energy component, we write the equation as

F [n] = Ts[n] + J [n] + Exc[n]. (2.45)

Where

Exc[n] = T [n]− Ts[n] + Vee[n]− J [n] (2.46)

Here the quantity Exc[n] is called exchange-correlation energy. It contains the differ-

ence between T and Ts and non-classical part of Vee[n]. The Euler equation becomes

µ = νeff (r) +
δTs[n]

δn(r)
(2.47)

Where KS effective potential is defined by

νeff (r) = ν(r) +
δJ [n]

δn(r)
+
δExc[n]

δn(r)

= ν(r) +

∫
n(r′)

|r− r′|
dr′ + νxc(r)

(2.48)
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with the exchange-correlation potential

νxc(r) =
δExc[n]

δn(r)
(2.49)

Figure 2.1: Flowchart of self-consistency loop for solving Kohn-Sham equations

For a system of non-interacting electrons moving in the external potential νs(r) =

νeff (r). Therefore, for a given νeff (r), one obtains the n(r) that satisfies eq.(2.49)

simply by solving the N -one electron equations,

[−1

2
∇2 + νeff (r)]ψi = εmeψi (2.50)

where εme is the eigenvalue of monoelectron equation and setting

n(r) =
N∑
i

|ψi(r)|2 (2.51)
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Eq.(2.48) and eq.(2.51) are celebrated Kohn-Sham equations.

The Kohn-Sham equations derived above that are summerized in the flow chart in

Figure: 2.1. They are a set of Schrödinger like independent particle equations which

must be solved subject to the condition that the effective potential νeff and the

density n(r) are consistent [63]. After solving Kohn-Sham equations, we will have a

set of single electron wave functions. These wave functions can be used to calculate

the new electron density. As an input, the new electron density is fed into the next

cycle. Finally, after each iteration, compare the differences in calculated electron

densities. If the difference in electron density between consecutive iterations is less

than a suitably determined convergence threshold, the solution of the Kohn-Sham

equations is deemed self-consistent. The predicted electron density has now been

converted to the ground state electron density, which can be used to compute the

total energy of the system [64].

2.9 The exchange-correlation (XC) functional

The exchange-correlation functional is at the core of density functional theory (DFT)

that determines the accuracy of DFT in describing the interactions among elec-

trons/ions in solids and molecules [65]. The crucial quantity in the Kohn-Sham

approach is the exchange-correlation energy which is expressed as a functional of

the density Exc[n] [66]. The exchange-correlation potential for a homogeneous elec-

tron gas (HEG) at the electron density observed at position r. This approximation

uses only the local density to define the approximate exchange-correlation functional,

hence called local density approximation (LDA) and widely used

ELDA
xc (r) =

∫
n(rε)homxc n(r)dr

=

∫
n(r[ε)homx n(r) + ε)homc n(r)]dr

= ELDA
xc [n(r)]

(2.52)

The LDA is very simple, corrections to the exchange-correlation energy due to the in-

homogeneities in the electronic density are ignored. Because of exchange-correlation
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energy of inhomogeneous charge density can significantly different from HEG result.

This leads to development of various generalized-gradient approximation (GGA). In

the GGA approximation, the local electron density and local gradient in the electron

density are included in the exchange and correlation energies [67]. One example of

GGA functional used in DFT is the Perdew-Burke Ernzerhof (PBE) functional. It

is formulated as

EPBE
xc = ELDA

xc + EPBE
c . (2.53)

Where, EPBE
xc is the exchange correlation energy calculated using the PBE func-

tional. ELDA
xc is the exchange correlation energy calculated using LDA approxima-

tion and EPBE
c is the correlation energy term specific to the PBE functional.

The exchange correlation potential was solved by GGA functional that understi-

mates tha band gap value. Therefore, the modified Becke- Johnson exchange po-

tential and LDA correlation by Trans and Blaha in 2009 (TB-mBJ) allows the cal-

culation of band gaps with an accuracy similar to very expensive GW calculations.
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Chapter 3

Results and discussion

3.1 Computational methods

We have investigated the structural, electronic, optical and thermoelectric prop-

erties of NaGeBr3 perovskite under various applied pressure. In this study, all the

calculations have been carried out within WIEN2k code, which is an implementation

of full potential linearized augmented plane wave (FP-LAPW) method in the den-

sity functional theory (DFT). The generalized gradient approximation (GGA) with

the Perdew-Berke-Ernzerhof (PBE) for the evaluation of exchange correlation en-

ergy in Kohn-Sham equation. We used it for optimized ground states of NaGeBr3.

PBE-GGA functional understimates the electronic bandgap. Thus, local density

approximation (LDA) with the modified Becke-Johnson (mBJ) potential of trans

and Blaha was considered to obtain more accurate band gaps of electronic prop-

erties. Optical properties and thermoelectric properties has been carried out with

the TB-mBJ potential. For optimizing the crystal structure, we set Rmt ×Kmax =

7.0 where, Rmt is the smallest of the muffin-tin sphere radii and Kmax is the largest

reciprocal lattice vector used in the plane wave expansion. The number of k-points

is selected to 1000 in Brillouin Zone, corresponding 10×10×10 k-mesh, during calcu-

lation. We set the charge density is Fourier expanded up to Gmax = 12 (Ry)
1
2 . The
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self-consistent calculations are considered converge when the convergence of energy

and convergence of charge are 0.00001 Ry and 0.001 e respectively.

3.2 Structural properties

The crystal structure of the cubic halide NaGeBr3 perovskite resemble the ordered

cubic lattice structure with space group Pm3̄m (221). The lattice parameters are

equal in this crystal structure and the crystallographic angles are 90◦. In the struc-

ture, the Na atom is located at 1a (0.0, 0.0, 0.0) Wyckoff position at the corner, the

Ge atom is placed at 1b (0.5, 0.5, 0.5) Wyckoff positions at the body center, and

the Br atoms is possess at 3c (0.5, 0.5, 0.5) Wyckoff position at the face center.

Na

Ge

Br

Figure 3.1: Crystal structure of cubic perovskite NaGeBr3 at 0 GPa pressure.

We have performed this study under various hydrostatic pressure from 0 GPa to

4 GPa. At 0 GPa, the computed lattice constant of NaGeBr3 is 5.52 Å, which is

relatively closure to the reference study 5.50 Å [68]. The daviation value of 0.37%

presents the high accuracy of this study.

The lattice constants are calculated by utilizing the PBE-GGA functional. The

optimized crystal structure and the variation of optimization energy with unit cell

volumes for NaGeBr3 are represented in Figure: 3.1 and Figure: 3.2.

The application of hydrostatic pressure manifests a significant impact on lattice

constant. Table: 3.1 shows the calculated lattice constant and energy band gap of
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Figure 3.2: Energy versus unit cell volume curve of cubic perovskite NaGeBr3 at 0 GPa

pressure.

Table 3.1: Variation of lattice constants and band gap of NaGeBr3 under pressure.

Pressures (GPa) lattice constants (Å) Band gap (eV)

0 5.52 0.81

1 5.45 0.57

2 5.38 0.35

3 5.32 0.12

4 5.27 0.00

NaGeBr3 at various applied pressure. The calculated lattice constant decreases at

a different rates over different pressure.

3.3 Electronic properties

The study of electronic properties is crucial to gain a clear concept about optical

properties of NaGeBr3 halide perovskite. The basic electronic properties including

band structure and density of states (DOS). Partial density of states is important to

know the different angular momentum component contribution. It provides infor-

mation to identify the nature of orbitals whether the states are s-like or p-like. The

charge density helps to understand the chemical bonding in NaGeBr 3 and maintain

their ionic and covalent bonds, Na-Br and Ge-Br, respectively. The electronic band

structure, density of states and charge density under various pressure are calculated
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and discussed in this section.

3.3.1 Band structure

The electronic band structure is necessary to understand the phyical properties

of crystalline solids which describe optical as well as transport properties. The

band structures of NaGeBr3 perovskite at different applied pressure are shown in

Figure: 3.3. The horizontal dotted line at 0 eV denotes the Fermi level (EF ), whereas

the valence band (VB) and conduction band (CB) are presented by colored line below

and above the EF respectively.
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Figure 3.3: The band structure of NaGeBr3 under various pressures.

The calculation is done by defining highly symmetric points on the edge of the

Brillouin Zone (BZ) with sampling path of Γ-X-M-R-Γ-M. This study illustrates the

22



Results and discussion

band structure around the EF ranging from −5 eV to +4 eV. The conduction bands

minima (CBM) and the valence band maxima (VBM) for NaGeBr3 perovskite are

located at the R point of the BZ. Therefore a direct band gap (Eg) is found for

NaGeBr3 perovskite. The observed energy band gap is 0.55 eV as calculated by

the PBE-GGA functional and 0.81 eV as calculated by TB-mBJ functional. The

PBE-GGA functional understimates the electronic bandgap, where the TB-mBJ

functional gives band gap values close to the experimental ones. We shows from the

Figure: 3.3 that the elevated pressure from 0 to 4 GPa leads to the gradual decrease

in band gaps as 0.81 eV to 0.00 eV for NaGeBr3 perovskite. As a result, the valence

band and the conduction band overlap and enhance the optical conductivity of metal

halide.

3.3.2 Density of states

The electronic states of a solid are described by a quantity called density of states

(DOS). In order to describe the electronic band structure, we looked at DOS. We

have investigated the changes in the DOS of the NaGeBr3 perovskite under hydro-

static pressures from 0 to 4 GPa. Figure: 3.4 shows the computed total and partial

density of states of NaGeBr3 perovskite at ambient and applied pressures.

For getting a material’s atomic contribution for creating it’s band structure, PDOS

is essential. From the Figure: 3.4, The black vertical dased line at 0 eV represents

the fermi level energy, EF . For the valence band, it can be noticed that the DOS

is largely contributed by the Br-4p orbital with a small participation of Ge-4p and

Na-3s orbital under hydrostatic pressure. For the conduction band, the DOS is

largely originates from Ge-4p orbitals with small participation of Br-4p. The TDOS

of NaGeBr3 perovskite under pressure for a deeper understanding. The DOS at the

fermi level for NaGeBr3 perovskite is seen to be zero at 4 GPa pressure that causes

semiconductor to metallic electrical phase transition.
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Figure 3.4: The total (TDOS) and the partial density of states (PDOS) of NaGeBr3
cubic halide perovskite under pressures.

3.3.3 The charge density

The charge density is the measurement of electric charge per unit area of a surface.

It indicates how much charge is stored in a particular field. In Figure: 3.5 and

Figure: 3.6, using the charge density mapping along the crystallographic planes

(100) and (101) planes at 0 GPa to 4 GPa pressures help to understand the chemical

bonding in NaGeBr3 perovskite.

Ionic bonding between Na and Br atoms is demonstrated by the charge distribution
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Figure 3.5: The charge density plots of NaGeBr3 along (100) and (101) plane under

various pressures.

of these two atoms because they donot overlapping along the (100) plane at 0 GPa.

But there is a tiny overlap between Ge and Br atoms along the (101) plane, indicating

the covalent bond. The ionic nature of Na-Br interactions are remain unchanged as

pressure increased. The covalent nature of Ge-Br interactions is strengthned because

overlapping of Ge and Br atoms increased along (101) plane.
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Figure 3.6: The charge density plots of NaGeBr3 along (100) and (101) plane under

various pressures.

3.4 Optical properties

We have calculated optical properties of NaGeBr3 halide perovskites. NaGeBr3

possess high reflectivity, less optical conductivity and moderate absorption nature.

Thus it is not better option for perovskite solar cell. Therefore, to make it better

efficiency perovskite solar cell, pressure can be applied. Optical properties includes

real and imaginary part of dielectric constant, absorption coefficient, reflectivity,

optical conductivity, extinction coefficient, refractive index and electron energy loss

of NaGeBr3 are analyzed and discuss under hydrostatic pressure from 0 GPa to 4

GPa.

3.4.1 Dielectric function

Dielectric resembles the relationship between energy band structure and optical

transition. To figure out the amount of electromagnetic radiation response in sample,

we must utilize the complex dielectric function.
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Figure 3.7: (a) Real part of dielectric function ε1(ω) and (b) imaginary part of dielectric

function ε2(ω)

.

The complex dielectric function written as

ε(ω) = ε1(ω) + iε2(ω). (3.1)

Where, ε1(ω) and ε2(ω) are represents real and imaginary parts of the dielectric

function. The electronic polarization of the compound is explains in real part and

electron excitation is explains in an imaginary part of complex dielectric function.

In Figure: 3.7, we showed the real and imaginary dielectric function versus energy

for NaGeBr3 under various applied pressure upto 0 GPa to 4 GPa obtained from

mBJ potential. At hydrostatic pressure, NaGeBr3 displays the peaks are shifted

towards higher energy values that means the value of ε1(ω) increases with induced

pressure and decreases with photon energy. Which indicates, ε1(ω) rises in the

infrared-visible region and falls in the ultraviolet region. In Figure: 3.7 the visible

and UV region has a greater ε2(ω) at 0 GPa which indicates a high absorption level
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but spectrum shifts to the low energy region under high pressure.

3.4.2 Optical reflectivity

Optical reflectivity is a determination of a surface’s capacity of reflect light. In

Figure: 3.8 (a), we showed the reflectivity versus energy of NaGeBr3 to used to

understand the surface nature. When applied various hydrostatic pressure from 0

GPa to 4 GPa, the reflectivity of NaGeBr3 has rises, these transits from the infrared

to visible region. Afer transiting to the ultraviolet region, these exhibits highest

peaks. That’s why it reduces the strength of the solar cell under various pressure.

Thus, NaGeBr3 may be employed as a coating to reduce solar heating.
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Figure 3.8: (a) Optical reflectivity and (b) Absorption coefficient as a function of energy

for NaGeBr3 under various pressure.
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3.4.3 Absorption coefficient

The fraction of energy (wavelength) absorbed per unit length of the material is

known as optical absorption coefficient. It provides the information about the effi-

ciency of solar energy conversion of a material. Figure: 3.8 (b) shows the absorption

coefficient versus energy of NaGeBr3 for 0 GPa to 4 GPa. The absorption coefficient

at different pressures in the range of 0 eV to 13 eV. The Figure displays that the ab-

sorption coefficient is increased under applied hydrostatic pressure, which indicates

the better efficiency of the NaGeBr3 perovskite solar cell.

3.4.4 Refractive index

The refractive index is an important parameter to measure, how much light bends

or reflects through the optical medium.
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Figure 3.9: (a) Refractive Index and (b) Extinction coefficient as a function of energy

for NaGeBr3 under various pressure.
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The refractive index and the band gap are inversly related as the refractive index

rises, the bandgap falls and vice-versa. In Figure: 3.9 (a), We have plotted refractive

index versus energy for NaGeBr3 under various pressure. From the figure we showed

that refractive index decreases steadily from the infrared to ultraviolet region.

3.4.5 Extinction coefficient

The strength how effectively an element absorbs or reflects radiation or light at

certain wavelengths is determined by it’s extinction coefficient.The Figure: 3.9 (b)

showed the extinction coefficient for NaGeBr3 halide perovskite under applied hy-

drostatic pressure upto 0 GPa to 4 GPa. The extinction coefficient is increased with

increasing pressure and peaks are shifted to the UV region with increasing photon

energy.

3.4.6 Optical conductivity

A characteristics of a material that indicates the relationship between the inducing

electric fields magnitudes and the materials induced current density is known as

optical conductivity. It provides information about materials atomic level electronic

structure and behaviour. Figure: 3.10 (a) illustrates the optical conductivity versus

energy of NaGeBr3 at 0 GPa to 4 GPa pressures. With increasing energy, NaGeBr3

exhibits optical conductivity at ultraviolet region under applied pressure.

3.4.7 Electron energy loss

The energy lost by a fast moving electron as it travel through a material is known

as electron energElectron energy loss function versus energy is shown in Figure: 3.10

(b) for NaGeBr3 under various pressure. We showed that in infrared-visible region,

electron energy loss is increased with increasing pressure. After transition of UV

region, the electron energy loss is decreased with increasing pressure.
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Figure 3.10: (a) Optical conductivity and (b) Electron energy loss as a function of energy

for NaGeBr3 under various pressure.

3.5 Thermo-electric properties

Thermal energy can be converted into electrical energy in thermoelectric material

by using the potential difference produced by the heat gradient during energy trans-

mission. The thermoelectric properties have been calculated for NaGeBr3 halide

perovskite under hydrostatic pressure using Boltztrap package. We determined the

transport coefficients such as the Seebeck coefficient (S), electrical conductivity σ/τ ,

thermal conductivity (κ), power factor (S2σ) and dimensionless figure of merit (ZT)

as a function of temperature combined in a compressed form as

ZT =
S2σT

κ
. (3.2)

The Seebeck coefficient of a material is a measure of the magnitude of an induced
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Figure 3.11: Thermoelectric properties as (a) Seebeck coefficient, (b) Figure of merit

(ZT), (c) Power factor, (d) Electrical conductivity and (e) Thermal conductivity of

NaGeBr3 under various pressures.

thermoelectric voltage in response to a temperature difference across that material,

which can be seen in mathematical form S = µ∇V /∇T . In Figure: 3.11 (a), We

investigated the Seebeck coefficient against temperature for NaGeBr3 under differ-

ent pressures upto 4 GPa. Seebeck coefficient decreased with rising temperature

and also decreased under pressure. The figure of merit (ZT) is used to measure the

materials quality for thermal devices. The figure of merit (ZT) values of NaGeBr3

has been examined as shown in Figure: 3.11 (b). Power factor of a material pro-

vides electrical energy. The power factor of NaGeBr3 displays in Figure: 3.11 (c)

that rising with applied pressure against temperature (T). Electrical conductivity

32



Results and discussion

defines the concentration of free electron. Figure: 3.11 (d) showed that electrical

conductivity increased under applied pressure and also increased with temperature.

Finally, Thermal conductivity describes the transportation through a material as

the materials atom are constantly moving in rotational, translational or vibrational

motion. The variation of atoms is responsible for generating heat or thermal energy

in a material. Figure: 3.11 (e) showed the thermal conductivity of NaGeBr3 under

various pressure. From the figure thermal conductivity increased with increasing

pressure against temperature (T).
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Conclusion

The study systematically explored the structural, electronic, optical, and thermo-

electric properties of cubic NaGeBr3 perovskite using the WIEN2k code within the

framework of the DFT-based FP-LAPW method under hydrostatic pressures rang-

ing from 0 GPa to 4 GPa. At ambient pressure, the lattice parameter of NaGeBr3

perovskite is found to be 5.52 Å, diminishing with increasing pressure. The calcu-

lated direct energy band gap is 0.81 eV using the TB-mBJ functional. As pressure

rises, the band gap reduces, signifying a transition from a semiconducting to a

metallic state at 4 GPa pressure. Analysis of the density of states (DOS) reveals

the dominance of p-states of Br atoms near the top of the valence band, while the

Ge-p orbital contributes significantly near the bottom of the conduction band. The

charge density provides insights into the ionic and covalent bonds, namely Na-Br

and Ge-Br. The study also covers the absorption coefficient calculation, dielectric

functions, optical conductivity, and other optical properties of NaGeBr3 under hy-

drostatic pressures. Thermoelectric properties, computed using the BoltzTraP code,

indicate an increase in electrical conductivity, thermal conductivity, and power fac-

tor, accompanied by a decrease in the Seebeck coefficient with rising pressure. The

findings suggest the potential suitability of pressure-induced NaGeBr3 material for

optoelectronic devices, particularly in solar cells and photovoltaic applications.
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