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Abstract

The electronic, magnetic and optical properties of Zr based full-Heusler alloy Zr2NiB

was studied using the spin-polarized full-potential linearized augmented plane wave

(FP-LAPW) method based on density functional theory (DFT). The optimized lat-

tice parameter was estimated to be 6.266 Å. Our study revel that for the alloy, both

the spin up and spin down states are conducting, demonstrating the alloy to be in

metallic nature. The total magnetic moment of this alloy is 0.99 µB, indicating the

alloy is ferromagnetic. Optical properties such as dielectric function, reflectivity,

refractivity, absorption coefficient, optical conductivity were also calculated.
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Chapter 1

Introduction

Heusler alloys have garnered more attention in recent years due to their intriguing

physical features [1–4], particularly the half-metallic (HM) character, which was first

predicted by de Groot et al in 1983 [5], whose majority-spin band is metalic while

the minority-spin band is semiconducting with an energy gap at the Fermi level

(EF), HM ferromagnets have received great attention from scientific researchers due

to potential applications in spintronic devices, such as the magnetic sensor, the tun-

nel junction, the spin valve as well as the primary materials in the electrode [6, 7].

Heusler alloys are named after Friedrich Heusler, a German engineer who initiated

fundamental research in half-metalic ferromagnets compounds in 1903. This at-

tempts the advantage to a new generation of devices that integrate standard micro-

electronics with spin-dependent effects, such as nonvolatile magnetic random access

memories and magnetic sensors [8,9]. Magnetic Heusler alloys have grown in popu-

larity due to their multifunctional properties, which make them useful in a variety

of domains ranging from spintronics to magnetic shape memory and magnetocaloric

technologies [10–19]. The magnetic Heusler alloys strong magnetoelastic interactions

are accountable for novel functional features such as magnetic shape memory and

magnetocaloric effects [10,13,14]. Heusler alloys are a type of half-metallic magnetic

material that is used in spintronic device applications [20]. Half metallic magnetic
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Introduction

materials with 100% spin polarization at the interface of the valence and conduction

bands have received a lot of attention. Heusler alloys can be classified into two main

groups, namely, Half-Heusler, full-Heusler alloys can be synthesized using the chem-

ical formulations XYZ, X2YZ respectively. Where X and Y represent transitional

metal elements and Z represents a main group element [21]. Full-Heusler X2YZ

alloys generally have two types of structures, CuHg2Ti and AlCu2Mn. Usually, the

Heusler structure can be looked as four interpenetrating face centered cubic lattices

and has four unique crystal sites namely A (0, 0, 0), B (0.25, 0.25, 0.25), C (0.5, 0.5,

0.5), and D (0.75, 0,75, 0.75) in Wyckoff coordinates. It is found that the site pref-

erence of the X and Y atoms is strongly influenced by the number of their valence

electrons [22]. Many researches devoted to investigate the physical properties of Zr-

based compounds such as: Zr2CrZ (Z=Ga, In) with CuHg2Ti-type structure [23].

In this work, we present an attempt of density functional theory (DFT) study for

the Zr2NiB alloys in order to enrich the Zr-based Heusle alloys. The paper is or-

ganized as follows: in chapter two, we explain the basic quantum mechanics and

density functional theory, in chapter three, it includes the calculation methods and

the structural, magnetic, electronic and optical properties are discussed; finally in

chapter four, we summarize our calculated results and conclusions.
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Chapter 2

Theoretical background

2.1 Schrödinger equation

The Schrödinger equation is a linear partial differential equation that governs the

wave function of a quantum-mechanical system. It is a key result in quantum me-

chanics, and its discovery was a significant landmark in the develoment of subject,

the name after Erwin Schrödinger [24].

ĤΨ(r⃗) = ÊΨ(r⃗) (2.1)

Where Ĥ is the hamiltonian operator, and Ψ is the wave function. Using the Hamil-

tonian for a single particle

Ĥ = T̂ + V̂ = − ℏ2

2m
∇⃗2 + V (r⃗) (2.2)

leads to the (non-relativistic) time-independent single-particle Schrödinger equation

ÊΨ(r⃗) =

[
− ℏ2

2m
∇⃗2 + V (r⃗)

]
Ψ(r⃗). (2.3)

3
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For N particles in three dimensions, the Hamiltonian is

Ĥ =
N∑
i=1

p̂2i
2mi

+ V (r⃗1, r⃗2, ...r⃗N) = −ℏ2

2

N∑
i=1

1

mi

+ V (r⃗1, r⃗2, ....r⃗N) (2.4)

The corresponding Schrödinger equation reads

ÊΨ(r⃗1, r⃗2, ...r⃗N) =

[
− ℏ2

2

N∑
i=1

1

mi

∇2
i + V (r⃗1, r⃗2, ...r⃗N)

]
Ψ(r⃗1, r⃗2, ...r⃗N) (2.5)

Special cases are the solutions of the time-independent Schrödinger equation, where

the Hamiltonian itself has no time-dependency (which implies a time-independent

potential V ((r⃗1, r⃗2, ...r⃗N)) and the solutions therefore describe standing waves which

are called stationary states or orbitals). The time-independent Schrödinger equation

is not only easier to treat, but the knowledge of its solutions also provides crucial

insight to handle the corresponding time-dependent equation. The time-independent

equation is obtained by the approach of separation of variables, i.e. the spatial part

of the wave function is separated from the temporal part via [25]

ψ(r⃗1, r⃗2, ...r⃗N , t) = ψ(r⃗1, r⃗2, ...r⃗N , t)τ(t) = ψ(r⃗1, r⃗2, ...r⃗N)e
iEt
ℏ (2.6)

Furthermore, the l.h.s. of the equation reduces to the energy eigenvalue of the Hamil-

tonian multiplied by the wave function, leading to the general eigenvalue equation

Eψ(r⃗1, r⃗2, ...r⃗N) = Ĥψ(r⃗1, r⃗2, ...r⃗N)) (2.7)

Again, using the many-body Hamiltonian, the Schrödinger equation becomes

Eψ(r⃗1, r⃗2, ...r⃗N) =

[
− ℏ2

2

N∑
i=1

1

mi

∇2
i + V (⃗(r⃗1, r⃗2, ...r⃗N)

]
ψ(r⃗1, r⃗2, ..., r⃗N) (2.8)
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2.2 The wave function

The wave function ψ has no direct physical meaning. The wave function ψ(r, t)

describes the position of a particle with respect to time. It can be considered as

probability amplitude. |ψ|2 is proportional to the probability of finding a particle

at a particular time. It is the probability density [26,27].

|ψ|2 = |ψ∗ψ|2 (2.9)

For the sake of simplicity the discussion is restricted to the time-independent wave

function. The Born probability interpretation of the wave function, which is a major

principle of the Copenhagen interpretation of quantum mechanics, provides a physi-

cal interpretation for the square of the wave function as a probability density [28,29]

P = |ψ(r⃗1, r⃗2, ...r⃗N , t)|2dr⃗1dr⃗2....dr⃗N (2.10)

Equation (2.10) describes the probability that particles 1,2,...,N are located simul-

taneously in the corresponding volume element dr⃗1 dr⃗2...dr⃗N [30] . What happens if

the positions of two particles are exchanged, must be considered as well. Following

merely logical reasoning, the overall probability density cannot depend on such an

exchange, i.e.

|ψ(r⃗1, r⃗2, ..., r⃗i, r⃗j, ..., r⃗N)|2 = |ψ(r⃗1, r⃗2, ..., r⃗j, r⃗i, ..., r⃗N)|2 (2.11)

There are only two possibilities for the behavior of the wave function during a

particle exchange. The first one is a symmetrical wave function, which does not

change due to such an exchange. This corresponds to bosons (particles with integer

or zero spin). The other possibility is an anti-symmetrical wave function, where

an exchange of two particles causes a sign change, which corresponds to fermions

(particles which half-integer spin) [26, 31]. Another consequence of the probability

interpretation is the normalization of the wave function. If equation (2.10) describes

the probability of finding a particle in a volume element, setting the full range of
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coordinates as volume element must result in a probability of one, i.e. all particles

must be found somewhere in space. This corresponds to the normalization condition

for the wave function.

∫
dr⃗1

∫
dr⃗2...

∫
dr⃗N |ψ(r⃗1, r⃗2, ..., r⃗N)|2 = 1 (2.12)

Equation (2.12) also gives insight on the requirements a wave function must fulfill

in order to be physical acceptable. Wave functions must be continuous over the

full spatial range and square-integratable [32]. Calculating the expectation values of

operators with a wave function also provides the expectation value of the relevant

observable for that wave function [33]. For an observable O(r⃗1, r⃗2, ..., r⃗N), this can

generally be written as

O = ⟨O⟩ =
∫
dr⃗1

∫
dr⃗2...

∫
dr⃗Nψ

∗(r⃗1, r⃗2, ..., r⃗N)Ôψ(r⃗1, r⃗2, ..., r⃗N) (2.13)

2.3 Born-Oppenheimer (BO) approximation

The Hamiltonian of a many-body condensed-matter system consisting of nuclei and

electrons can be written as:

Ĥ = − ℏ2

2me

N∑
i=1

∇i2− ℏ2

2Mk

M∑
k=1

∇2
k−

N∑
i=1

M∑
k=1

Zke
2

rik
+
1

2

∑
i = 1N

N∑
j>i

e2

rij
+
1

2

M∑
k=1

M∑
l>k

ZkZl
Rkl

(2.14)

Using the Born-Oppenheimer approximation, the electrons in a molecule are de-

scribed without taking into account the mobility of the atomic nuclei. It is based

on the fact that the mass of a nucleus in a molecule is significantly greater than

the mass of an electron (more than 1000 times) [34]. Consequently, the many-body

problem is simplified to the smaller problem of a system of electrons traveling in an

external potential, such as the potential formed by positively charged nuclei. The

Schrödinger equation for this system is then

T̂ψ + V̂ ψ = −iℏ∂ψ(x⃗, t)
∂t

(2.15)
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where ψ is the many-electron wavefunction. In electronic structure calculations,

this is the most important object to consider because it holds all of the information

about the system of electrons. A probability amplitude for discovering a system of

electrons in a given configuration is provided by this formula,

ψ = ψ(r⃗1, r⃗2, ...r⃗n) (2.16)

where the r⃗n are the coordinates of the electrons. Again, spin is included in the

coordinates r⃗n, so that (r⃗ = (x, y, z, σ) where σ is the spin coordinate and can take

the values of (↑ spin-up) or (↓ spin-down). T̂ is now the many-electron kinetic energy

operator, acting on as

T̂ψ = −1

2
▽2 r⃗nψ (2.17)

▽2r⃗n is the many-electron potential operator, which acts on ψ as

V̂ ψ = −1

2

(∑
n

▽2
n̸=m | 1

r⃗n −mn

| +vext(r⃗n)

)
ψ (2.18)

where Vext is the external potential in which the electrons are moving. For the

system of electrons and nuclei is given by,

Vext((r⃗) = −
∑
n,m

| Zlm
(r⃗n −Rln

| (2.19)

It leads to the easy method for the treatment of molecules. The Born-Oppenheimer

is based on the fact that nuclei are several thousand times heavier than electrons.

The proton, itself, is approximately 2000 times more massive than an electron. In a

dynamical sense, the electrons can be regarded as particles that follow the nuclear

motion adiabatically,meaning that they are dragged along with the nuclei without

requiring a finite relaxation time. The many-electron Schrödinger equation must

be solved in accordance with the limitations of normalization and exchange anti-

symmetry. As a result of normalization, any potential electron configuration is

7
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guaranteed to have the same probability to 1.

ψ(r⃗1, r⃗2, ..r⃗n, r⃗m, r⃗N) = −ψ(r⃗1, r⃗2, ..r⃗n, r⃗m, r⃗N) (2.20)

Most of the time, we’re solely concerned with the electronic system’s ground state.

This is the lowest-energy solution to the Schrödinger equation for Time-independent

many-electron systems.

T̂ψ + V̂ ψ = Eψ (2.21)

where E is the ground state energy of the system of electrons.

2.4 The Hartree-Fock approach

In order to find a suitable strategy to approximate the analytically not accessible

solutions of many-body problems, a very useful tool is variational calculus, similar to

the least-action principle of classical mechanics. By the use of variational calculus,

the ground state wave function ψ0 , which corresponds to the lowest energy of the

system E0 , can be approached [35]. Hence, for now only the electronic Schrödinger

equation is of interest, therefore in the following sections we set Ĥ ≡ Ĥel, E ≡ Eel

, and so on. Observables in quantum mechanics are calculated as the expectation

values of operators [25, 28]. The energy as observable corresponds to the Hamil-

ton operator, therefore the energy corresponding to a general Hamiltonian can be

calculated as

E = ⟨Ĥ⟩ =
∫
dr⃗1

∫
dr⃗2...

∫
dr⃗Nψ ∗ (r⃗1, r⃗2, ..., r⃗N)Ĥψ(r⃗1, r⃗2, ..., r⃗N) (2.22)

The Hatree-Fock techique is based on the principle that the energy obtained by any

(normalized) trial wave function other than the actual ground state wave function

is always an upper bound, i.e. higher than the actual ground state energy. If the

trial function happens to be the desired ground state wave function, the energies

8
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are equal

Etrial ≥ E0 (2.23)

with

Etrial =

∫
dr⃗1

∫
dr⃗2...

∫
dr⃗Nψ

∗
trial(r⃗1, r⃗2, ..., r⃗N)Ĥψtrial(r⃗1, r⃗2, ..., r⃗N) (2.24)

and

E0 =

∫
dr⃗1

∫
dr⃗2...

∫
dr⃗Nψ

∗
0(r⃗1, r⃗2, ..., r⃗N)Ĥψ0(r⃗1, r⃗2, ..., r⃗N) (2.25)

For a detailed description of this notation, the reader is referred to the original

publication [36]. In that notation, equation (2.23) to (2.25) are expressed as

⟨ψtrial|Ĥ|ψtrial⟩ = Etrial ≥ E0 = ⟨ψ0|Ĥ|ψ0⟩ (2.26)

Proof : [28] The eigenfunctions ψi of the Hamiltonian Ĥ (each corresponding to an

energy eigenvalue Ei form a complete basis set, therefore any normalized tria wave

function ψtrialcan be expressed as linear combination of those eigenfunctions.

ψtrial =
∑
i

λiψi (2.27)

The assumption is made that the eigenfunctions are orthogonal and normalized.

Hence it is requested that the trial wave function is normalized, it follows that

⟨ψtrial|ψtrial⟩ = 1 = ⟨
∑
i

λiψi|
∑
j

λjψj⟩ =
∑
i

∑
j

λ∗iλj⟨ψi|ψj⟩ =
∑
j

|λj|2 (2.28)

On the other hand, following (2.23) and (2.25)

Etrial = ⟨ψtrial|Ĥ|ψtrial⟩ = ⟨
∑
i

λiψi|Ĥ|
∑
j

λjψj⟩ =
∑
j

Ej|λj|2 (2.29)

9
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Together with the fact that the ground state energy E0 is per definition the lowest

possible energy, and therefore has the smallest eigenvalue (E0 ≤ Ei), it is found that

Etrial =
∑
j

Ej|λj|2 ≥ E0

∑
j

|λj|2 (2.30)

what resembles equation (2.26). Equations(2.22) to (2.30) also include that a search

for the minimal energy value while applied on all allowed N-electron wave-functions

will always provide the ground-state wave function (or wave functions, in case of a

degenerate ground state where more than one wave function provides the minimum

energy). Expressed in terms of functional calculus,where ψ → N addresses all

allowed N-electron wave functions,

E0 = min
ψ→N

E[ψ] = min
ψ→N

⟨ψ|Ĥ|ψ⟩ = min
ψ→N

⟨ψ|T̂ + V̂ + Û |ψ⟩ (2.31)

Due to the vast number of alternative wave functions on the one hand and pro-

cessing power and time constraints on the other, this search is essentially unfeasible

for N-electron systems. Restriction of the search to a smaller subset of potential

wave functions, as in the Hartree-Fock approximation, is conceivable. A slater de-

terminant is a formula in quantum mechanics that desceibes the wave function of

a multi-fermionic system. It satisfies anti-symmetric criteria, and thus the Pauli’s

principle, by changing sign when two electrons are exchanged (or other fermions).

Only a small fraction of all potential fermionic wave functions can be expressed as

a single slater determinant, but because of their simplicity, they are an important

and useful subset. In the Hartree- Fock approach, the search is restricted to ap-

proximations of the N-electron wave function by an antisymmetric product of N

(normalized) one electron wave functons, the so called spin- orbitals χi(x⃗i) [31]. A

wave function of this type is called Slater-determinant, and reads.

10
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Ψ0 ≈ ϕSD = (N !)−
1
2

∣∣∣∣∣∣∣∣∣∣∣∣

χ1(x⃗1) χ2(x⃗1) · · · χN(x⃗1)

χ1(x⃗2) χ2(x⃗2) · · · χN(x⃗2)
...

...
. . .

...

χ1(x⃗N) χ2(x⃗N) · · · χN(x⃗N)

∣∣∣∣∣∣∣∣∣∣∣∣
(2.32)

It is important to notice that the spin-orbitals χi(x⃗i) are not only depending on

spatial coordinates but also on a spin coordinate which is introduced by a spin

function, x⃗i = r⃗i, s. Returning to the variational principle and equation (2.31), the

ground state energy approximated by a single slater determinant becomes.

E0 = min
ϕSD→N

E[ϕSD] = min
ϕSD→N

⟨ϕSD|Ĥ|ϕSD⟩ = min
ϕSD→N

⟨ϕSD|T̂ + V̂ + Û |ϕSD⟩ (2.33)

A general expression for the Hartree-Fock Energy is obtained by usage of the Slater

determinant as a trial function.

EHF = ⟨ϕSD|Ĥ|ϕSD⟩ = ⟨ϕSD|T̂ + V̂ + Û |ϕSD⟩ (2.34)

For the sake of brevity, a detailed derivation of the final expression for the Hartree-

Fock energy is omitted. It is a straightforward calculation found for example in the

Book by Schwabl [25]. The final expression for the Hartree-Fock energy contains

three major parts: [31].

EHF = ⟨ϕSD|Ĥ|ϕSD⟩ =
N∑
i

(i|ĥ|i) + 1

2

N∑
i

N∑
j

[(ii|jj)− (ij|ji)] (2.35)

with

(i|ĥi|i) =
∫
χ∗
i (x⃗i)[−

1

2
∇⃗2
i −

M∑
k=1

Zk
rik

]χi(x⃗i)dx⃗i, (2.36)

(ii|jj) =
∫∫

|χi(x⃗i)|2
1

rij
|χj(x⃗j)|2dx⃗idx⃗j, (2.37)

11
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(ii|jj) =
∫∫

χi(x⃗i)χ
∗
j(x⃗j)

1

rij
χj(x⃗j)χ

∗
i (x⃗i)dx⃗idx⃗j (2.38)

The first term corresponds to the kinetic energy and the nucleus-electron inter-

actions, ĥ denoting the single particle contribution of the Hamiltonian, whereas

the latter two terms correspond to electron-electron interactions. They are called

Coulomb and exchange integral, respectively. Examination of equations (2.35) to

(2.38) furthermore reveals, that the Hartree-Fock energy can be expressed as a func-

tional of the spin orbitals EHF = E[{χi}]. Thus,variation of the spin orbitals leads

to the minimum energy. An important point is that the spin orbitals remain or-

thonormal during minimization.This restriction is accomplished by the introduction

of Lagrangian multipliers λi in the resulting equations, which represent the Hartree-

Fock equations.

f̂χi = λiχi i = 1, 2, ..., N (2.39)

with

f̂i = −1

2
∇⃗2
i −

M∑
k=1

Zk
rik

+
N∑
i

[Ĵj(x⃗i)− K̂j(x⃗i)] = ĥi + V̂ HF (i) (2.40)

Finally one arrives at the Fock operator for the i-th electron. In similarity to(2.28)

to (2.31), the first twonterms represent the kinetic and potential energy due to

nucleus-electron interaction, collected in the core Hamiltonian ĥi, whereas the latter

terms are sums over the Coulomb operators Ĵj and the exchange operators K̂j with

the other j electrons, which form the Hartree-Fock potential V̂ HF . There are major

approximation of Hartree-Fock can be seen. The two electron repulsion operator

from the original Hamiltonian is exchanged by a one-electron operator V̂ HF which

describes the repulsion in average.

2.4.1 Limitations and failings of the Hartree-Fock approach

Atoms as well as molecules can have an even or odd number of electrons. If the

number of electrons is even and all of them are located in double occupied spatial

12
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orbitals ϕi, the compound is in a singlet state.Such systems are called closed-shell

systems. Compounds with an odd number of electrons as well as compounds with

single occupied orbitals, i.e. species with triplet or higher ground state, are called

open-shell systems respectively. These two types of systems correspond to two differ-

ent approaches of the Hartree-Fock method. In the restricted HF-method (RHF),all

electrons are considered to be paired in orbitals whereas in the unrestricted HF

(UHF)-method this limitation is lifted totally. It is also possible to describe open-

shell systems with a RHF approach where only the single occupied orbitals are ex-

cluded which is then called a restricted open-shell HF (ROHF) which is an approach

closer to reality but also more complex and therefore less popular than UHF [31].

There are also closed-shell systems which require the unrestricted approach in order

to get proper results. For instance, the description of the dissociation of H2 (i.e. the

behavior at large internuclear distance), where one electron must be located at one

hydrogen atom, can logically not be obtained by the use of a system which places

both electrons in the same spatial orbital. Therefore the choice of method is always

a very important point in HF calculations [37].Kohn states several M = p5 with

3 ≤ p ≤ 10 parameters for an output with adequate accuracy in the investigations

of the H2 system [38]. For a system with N = 100 electrons, the number of

parameters rises to,

M = p3N = 3300to10300 ≈ 10150to10300 (2.41)

According to the equation (2.41), energy reduction would have to be done in a space

with at least 10150 dimension, which is well above current computer capabilities. As

a result, HF methods are limited to situations involving a modest number of electron

(N ≈ 10), This barrier commonly referred to as the exponential wall because of the

exponential component in (2.41) [38]. Since a many electron wave function cannot

be described entirely by a single Slater determinant, the energy obtained by HF

calculations is always larger than the exact ground state energy. The most accurate

energy obtainable by HF-methods is called the Hartree-Fock-limit.

The difference between EHF and Eexact is called correlation energy and can be

13
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denoted as [39]

EHF
corr = Emin − EHF (2.42)

EHF
corr = 14.9eV < 0.001.Emin, (2.43)

it can have a huge influence.

Ediss = 9.9eV < Ecorr, (2.44)

2.5 The electron density

A general statement concerning the computation of observables has been presented

in section about the wave function ψ. This section is about a quantity that is

computed in a similar manner. The electron density (for N electrons) as the as [27].

n(r⃗) = N
∑
s1

∫
dx⃗2...

∫
dx⃗Nψ

∗(x⃗1, x⃗2, ...., x⃗N)ψ(x⃗1, x⃗2, ..., x⃗N). (2.45)

Which is the basic variable of density function theory. If the spin coordinates are

neglected, the electron density can even be expressed as measurable observable only

dependent on spatial coordinates.

n(r⃗) = N

∫
dr⃗2...

∫
dr⃗Nψ

∗(r⃗1, r⃗2, ..., r⃗N)ψ(r⃗1, r⃗2, ..., r⃗N) (2.46)

The total number of electrons can be obtained by integration the electron density

over the spatial variables. which can e.g. be measured by X-ray diffraction.

N =

∫
dr⃗n(r⃗). (2.47)

2.6 Thomas-Fermi Model

The predecessor to DFT was the Thomas-Fermi (TF) model proposed by Thomas

amd Fermi [40] in 1927. In this method, they used the electron density n(r) as

14
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the basic variable instead of the wave function. The total energy of a system in an

external potential Vext(r) is written as a function of the electron density n(r) as:

ETF [n(r)] = A1

∫
n(r)

5
3dr⃗ +

∫
n(r)Vext(r)dr+

1

2

∫∫
n(r)n(r′)

|r− r′|
drdr′ (2.48)

where the first term is the kinetic energy of the non-interacting electron in a ho-

mogeneous electron gas (HEG) with A1 = 3
10
(3π2)

2
3 in the atomic units. The free

electron energy state εk =
k2

2
up to the fermi wave vector kF = [3π2n(r⃗)]

1
3 as:

t0[n(r)] =
2

(2π)3

∫ kF

0

k2

2
4πk2dk = A1n(r)

5
3 (2.49)

In 1930, Dirac extended the Thomas-Fermi method by adding a local exchange term

A2

∫
n(r⃗)

3
4dr⃗ to Eq.(2.48) with A2 = −3

4
( 3
π
)
1
3 which leads Eq.(2.48) to

By using the technique of Lagrange multipliers, the solution can be found in the

stationary condition:

δ{ETED[n(r)]− µ(

∫
n(r)−N)} = 0 (2.50)

where µ is a constant known as a Lagrange multiplier, whose physical meaning is

the chemical potential. E.(2.51) leads to the Thomas-Fermi-Dirac equation,

5

3
A1n(r⃗)

2
3 + Vext(r) +

∫
n(r′)

|(r)− (r)′|
d(r)′ +

4

3
A2n(r))

1
3 − µ = 0 (2.51)

This can be solved directly to obtain the ground state density. Although it is not

good enough to describe electrons in matter.

2.7 The Hohenberg-Kohn (HK) theorems

DFT was proven to be an exact theory of many-body systems by Hohenberg and

Kohn [41] in 1964. It applies not only to condensed-matter systems of electrons

with fixed nuclei, but also more to any system of interacting particles in an external

potential Vext(r). The theory is based upon two theorems.
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2.7.1 The HK theorem I

The ground state particle density n(r) of a system of interacting particles in an

external potential Vext(r) uniquely determines the external potential Vext(r), except

for a constant. Thus the ground state particle density determines the full Hamilto-

nian, except for a constant shift of the energy. In principle, all the states including

ground and excited states of the many-body wave functions can be calculated. This

means that the ground state particle density uniquely determines all properties of

the system completely.

Here only consider the case that the ground state of the system is nondegenerate.

It can be proven that the theorem is also valid for systems with degenerate ground

state. Suppose there are two different external potentials Vext(r) and Vext(r)
′
ext(r)

whice differ by more than a constant and lead to the same ground state density

n0(r). The two external potentials would give two different Hamiltonians, Ψ and

Ψ′, with ĤΨ = E0Ψ and Ĥ ′Ψ′ = E ′
0Ψ

′. Since Ψ′ is not the ground state of Ĥ, it

follows that

E0 < ⟨Ψ′|Ĥ|Ψ′⟩

< ⟨Ψ′|Ĥ ′|Ψ′⟩+ ⟨Ψ′|Ĥ − Ĥ ′|Ψ′⟩ (2.52)

< E ′
0 +

∫
n0(r)[Vext(r)− V ′

ext(r)]dr

Similarly

E0
′ < ⟨Ψ|Ĥ

′
|Ψ⟩

< ⟨Ψ|Ĥ|Ψ⟩+ ⟨Ψ|Ĥ ′ − Ĥ|Ψ⟩ (2.53)

< E0 +
∫
n0(r)[V

′
ext(r)− Vext(r)]dr

Adding Eq. (2.44) and (2.45) lead to the contradiction

E0 + E ′
0 < E0 + E ′

0 (2.54)
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Hence, no two different external potentials Vext(r) can give rise to the same ground

state density n0(r),i.e., the ground state density determines the external potential

Vext(r), except for a constant.That is to say, there is a one-to-one mapping between

the ground state density n0(r) and the external potential Vext(r), although the exact

formula is known.

2.7.2 The HK theorem II

There exists a universal functional F [n(r)] of the density, independent of exter-

nal potential Vext(r), such that the global minimum value of the energy functional

E[n(r)] ≡
∫
n(r)Vext(V )d(r)+F [n(r)] is the exact ground state energy of the system

and the exact ground state density n0(r) minimizes this functional. Thus the exact

ground state energy and density are fully determined by the functional E[n(r)].

The universal functional F [n(r)] can be written as

F [n(r)] ≡ T [n(r)] + Eint[n(r)] (2.55)

where T [n(r)] is the kinetic energy and Eint[n(r)] is the interaction energy of the

particles. According to variational principle, for any wave function Ψ′, the energy

functional E[Ψ′]:

E[Ψ′] = ⟨Ψ′|T̂ + V̂int + V̂ext|Ψ′⟩ (2.56)

has its global minimum value only when Ψ′ is the ground state wave function Ψ0,

with the constraint that the total number of the particles is conserved. According

to HK theorem I, Ψ′ must correspond to a ground state with particle functional of

n′(r⃗) and external potential V ′
ext(r), then E[Ψ

′] is a functional of n′(r). According

to variational principle:

E[Ψ′]≡⟨Ψ′|T̂ + V̂int + V̂ext|Ψ′⟩

= E[n′(r)]

=
∫
n′(r)V ′

ext(r)dr+ F [n′(r)]
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> E[Ψ0] (2.57)

=
∫
n0(r)d(r) + F [n0(r)] = E[n0(r)]

Thus the energy functional E[n(r)] ≡
∫
n(r)Vext(r)d(r) + F [n(r)] evaluated for the

correct ground state density n0(r) is indeed lower than the value of this functional

for any other density n(r). Therefore by minimizing the total energy functional of

the system with respect to variations in the density n(r), one would find the exact

ground state density and energy.

2.8 The Kohn-Sham (KS) equations

Kohn and Sham introduced an orbital approach for evaluating Fni[n] in 1965, which

was an important step toward quantitative modeling of electronic structure. In other

words, in order to evaluate the kinetic energy of N non interacting particles given

only their density distribution n(r), they simply found the corresponding potential,

called veff (r), and used the Schrödinger equation.

(
− ℏ2

2m
∇⃗2 + veff (r)

)
ψi(r) = ϵiψi(r) (2.58)

Such that n(r) =
∑N

i=1 |ψ(r)|2 the states ψi here are ordered so that the energies

ϵi are non decreasing, and the spin index is included in i. If the ϵN is degenerate

with ϵN+1 (and also at finite temperatures), fractional occupations fi are to be used

n(r) =
∑∞

i=1 fi|ψ(r)|2, but if only spin degeneracy is involved, the result for the

density is not affected. The kinetic energy is then given by,Fni =
∑N

i=1 |⟨ψi|t̂|ψi⟩ =∑N
i=1 ϵi−

∫
d(r)n(r)veff (r) where t̂i is the kinetic energy operator for the ith electron

(T̂ =
∑

i t̂i).

In practice, it is the external potential of a given system which is known, not the

density distribution or the effective potential. One may find the effective potential

by taking a functional derrivative of the three term expression for FHK [n], and
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rearranging the terms:

veff (r) = v(r)− eφ(r) +XC(r) (2.59)

where we have used equqtion (2.59)for both the interacting and non interacting

system. The electrostatic potential is here

φ(r) = −e
∫
dr′

n(r′)

|r− (r′)|
(2.60)

And the exchange - correlation potential is defined as

vXC(r) =
δEXC
δn(r)

(2.61)

Given a particular approximation for EXC(n), one obtains vXC(r) and can thus find

veff (r) from n(r) for a given v(r). The set of equations described above is called

the KohnSham equations of DFT [42]

2.8.1 Solving Kohn-Sham equations

Once we have approximated the exchange-correlation energy, we are in a position

to solve the Kohn-Sham equations. The Kohn-Sham equations have an iterative

solution; they have to be solved self-consistently. To solve the Kohn-Sham equa-

tions for a many body system, we need to define the Hartree potential and the ex-

change -correlation potential, and to define the Hartree potential and the exchange-

correlation potential, we need to know the electron density n(r).

However, to find the electron density, we must know the single electron wave func-

tions. We do not know these wave functions until we solve the Kohn-Sham equations.

The well-known approach to solve the Kohn-Sham equations is to start with an ini-

tial trial electron density as illustrated in figure 2.1. Then solve these equations

using trial electron density. After solving the Kohn-Sham equations, we will have a

set of single electron wave functions. Using these wave functions, we can calculate

the new electron density. The new electron density in an input for the next cycle.
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Figure 2.1: Flowchart of self-consistency loop for solving Kohn-Sham equations.

Finally, compare the difference between the calculated electron densities for consec-

utive iterations. If the difference in electron density between consecutive iteration

is lower than an appropriately chosen convergence criterion, then the solution of

the Kohn-Sham equations is said to be self-consistent. Now the calculated electron

density is considered as the ground state electron density, and it can be used to

calculate the total energy of the system [43]

2.9 The Exchange-Correlation (XC) functional

The exchange-correlation potential of the Kohn–Sham density-functional scheme is

the difference between the Fermi potential an effective potential appearing in the

one-electron Schrödinger equation for the square root of the electron density and

the Pauli potential, i.e., vXC(r) = vF(r) − vP(r). The major problem in solving

the Kohn-Sham equations is that the true form of the exchange-correlation func-

tional is not known. Two main approximation methods have been implemented to

approximate the exchange-correlation functional. The local density approximation

(LDA) is first approach to approximate the exchange-correlation functional in DFT
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calculations. The second well known class of approximations to the Kohn-Sham

exchange-correlation functional is the generalized gradient approximation (GGA).

In the GGA approximation the exchange and correlations energies include the local

electron density and the local gradient in the electron density.
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Chapter 3

Electronic, magnetic and optical

properties

3.1 Computational Details

The electronic structure of our full-Heusler compound was calculated using the scalar

relativistic FP-LAPW method within density functional theory as implemented in

the WIEN2k code. Choosing a gradiant approximation for determining the exchange

and correlation potential energy in the Kohn-Sham equation plays a significant role

in the final result’s accuracy. We use the Perdew-Burke-Ernzerhof (PBE) formula-

tion of the generalized gradient approximation (GGA)to optimize the parameters

namely RMTKmax, K-points and lattice constant. The bassic functions are expended

into spherical harmonic function inside the muffin-tin sphere and Furier series in

the interstitial region. The convergence of the basis set was overseen by a cutoff

parameter, RMTKmax=8, where RMT is the smallest radius of a muffin-tin sphere

and Kmax is the largest reciprocal lattice vector used in the plane wave expeansion

within the interstitial region. The convergence of the total energy to a minimum

value of 10−4 Ry determines the convergence of self-consistency calculations, while

the charge convergence criteria was set 10−3 e. The number of K-points in the
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Brillouin zone is approximately 10000.

3.2 Structural properties

Full Heusler compounds crystalize in two prototype structure. The regular Heusler

crystallizes in a cubic structure AlCu2Mn prototype with the space group (225,

Fm3̄m) and the inverse Heusler, while in CuHg2Ti with space group (216, F43̄m).

In the present work, we will study the full Heusler Zr2NiB allow with AlCu2Mn-type

Figure 3.1: Crystal structure of the AlCu2Mn-type for Zr2NiB full-Heusler alloy.

structure, where Zr atoms occupy A (0, 0, 0) and C (0.5, 0.5, 0.5) Wyckoff positions

while Ni and B atoms are respectively located at B (0.25, 0.25, 0.25) and D (0.75,

0.75, 0.75) positions. The full-Heusler compound consist of four interpenetrating

face-centred-cubic lattices. Figure 3.1 gives a representation of this configuration.

In order to obtain ground state of Zr2NiB alloy, we firstly study the structural

property using the plane-wave ultrasoft pseudo-potential DFT method. In fact, our

basic procedure in this work is to calculate the total energy as a funtion of a unit-

cell volume around a equilibrium state volume in the ferromagnetic (FM) phases.

According to the modified Birch-Murnaghan equation of state volume optimization

has been performed to obtain the ground state properties such as lattice parameter.

The volume versus total energy plots of Zr2NiB alloy are shown in Figure 3.2. The

most stable structure of Zr2NiB is confirmed by optimizing total energy as a function
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Figure 3.2: Calculated total energy of Zr2NiB compound as a function of unit cell

volume.

of volume for states with the lattice parameter 6.2656 Å. Figure 3.2, depicts the

change of total energy with respect to cell volume in ferromagnetic states. Lattice

constant is obtained from E-V, energy versus volume diagram where V is equilibrium

volume. Table 3.1 the calculated Lattice Constant and Total energy.

Table 3.1: Minimun equilibrium energy, equilibrium lattice constant of Zr2NiB for mag-

netic calculation.

Compounds Structure type Calculation Lattice constant Å Total energy (Ry)

Zr2NiB AlCu2Mn Magnetic 6.2656 -17488.25549092

3.3 Electronic properties

To comprehend the electronic properties of Zr2NiB, we must compute the spin-

polarized band structures and total density of states (TDOS) using the gener-

alized gradient approximation (GGA) available as Perdew-Burke-Ernzerhof(PBE)

funtional.
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3.3.1 Band structures

The investigation of the electronic band structure is necessary to understand the

physical properties of crystaline solids which almost completely describe optical as

well as transport properties. Spin-polarized band structure of Zr2NiB alloys at the
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Figure 3.3: Band structures of full-Heusler Zr2NiB a) spin up and b) spin down.

6.2656 Å lattice constant for both the spin-up and spin-down channels at equilibrium

state along the high symmetry direction in the first Brillouin zone are illustrated

in Figure 3.3(a) illustrated the spin-up (mejority) state and the Figure 3.3(b) sipn-

down (minority) state respectively. Fermi level is set to zero. For the Zr2NiB alloys,

it’s evidant that the valence bands overlap with conduction bands in both spin-up

and spin-down band structure and the Fermi level passes through the overlapping

region EF . So the band gap is zero here. The minimum energy required to jump

electron from majority spin channel to minority spin Fermi level, spin-flip gap ∆s−f

is 0 eV for Zr2NiB. The zero flip gap for ∆s−f which indicates these alloys are true

metalic.
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3.3.2 Density of states

The density of states (DOS) is essentially the number of different states that elec-

trons are permitted to occupy at a given energy level, i.e. the number of electron

states per unit volume per unit energy. For the study of electronic properties of
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Figure 3.4: a) Total density of states (TDOS) and partial density of states (PDOS) of

Zr2NiB b) Zr c) Ni and d) B atoms

materials, it is necessary to calculated the total density of state (TDOS) and partial

density states (PDOS) with GGA. The corresponding total and partial density of

states for Zr2NiB are illustrated in Figure 3.4(a-d). Now, the PDOS of Zr contains

orbital p, d, electrons for the spin up and spin down for Zr2NiB alloys is plotted in

Figure 3.4(b). Similarly the PDOS of Ni and B are also plotted in Figure 3.4(c) and

Figure 3.4(d). The upper portion depicts the majority spin density, while the lower

portion depicts the minority spin density. For Zr2NiB alloys, in Figure. 3.4(a) the

conduction band overleps the Fermi level and enters into the valance band region,

this indicates that the system is matelic.
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3.4 Magnetic properties

The spin-polarized calculations show that the Zr2NiB has ferromagnetic ordering.

We have also calculated the partial magnetic moments of Zr, Ni, and B atoms, as

well as the magnetic moment contribution of the interstitial region. We list the result

Table 3.2: Total spin magnetic moment of Zr2NiB in PBA-GGA approach.

Compound Structure type Individual magnetic moment(µB)

Zr2NiB AlCu2Mn

Site GGA

Interstitial 0.21443

MZr 0.19065

MNi 0.38871

MB 0.01244

Mtot 0.99688

in Table 3.2, The main contribution of total magnetic moment is due to Zr atoms.

The partial moments of Zr and Ni are antiparallel that indicates the ferromagnetic

of Zr2NiB alloys. the calculated total magnetic moment for full Heusler alloys with

L21 structure is an integer number 2.000 µB per formula unit which follows the

Slater-Pauling (SP) rule: Mtot=(Ztot-24) µB, where Ztot represents the total number

of valence electrons. This antiparallel alignment is beneficial to the Zr atoms leading

to a total magnetic moment of 0.99µB. Ferromagnetic materials are commonly used

for nonvolatile information storage in tapes, hard drives, etc.

3.5 Optical properties

Optical properties of a material define how it interacts with light. The response to

electromagnetic radiation is important for optoelectronic device applications, so we

have calculated the optical parameters of Zr2NiB. We have calculated all the param-

eters using The GGA-PBE functional. In order to investigate the optical properties

of Zr2NiB full-Heusler alloys, we calculated its dielectric function, absorption coef-

ficient, reflection, refraction and optical conductivity.
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3.5.1 Dielectric function

The mathematical formula for dielectric function given by Ehrenreich and Cohen’s

is.

ϵ(ω) = ϵ1(ω) + iϵ2(ω) (3.1)

where, ϵ1 and ϵ2 are the real and imaginary part of the dielectric function. Real di-

electric constant respectively, (ϵ1(ω)) represents the degree of polarization of a mate-

rial when it placed into an electric field and imaginary dielectric function (ϵ2(ω)) rep-

resents the energy dissipation aptitude of a dielectric material. The optical response

of the material to an electromagnetic field is described by the dielectric function.

The real and imaginary dielectric function for Zr2NiB obtained from PBE-GGA

potential in Figure 3.5(a,b) where energy plotted in the X-direction, real and imag-

inary dielectric function ploted in Y-directin. The positive half is concerned with
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Figure 3.5: a) Real dielectric function b) Imaginary dielectric function

EM wave propagation, while the negative half is concerned with EM wave absorp-

tion. As a result, the larger the static value of ϵ1(0), the smaller the magnitude of

the band gap formed. The positive part of ϵ1(ω) indicates that Zr2NiB conducts at

low energy levels, while the negative part of ϵ1(ω) indicates that it is insulating at

high energy levels.ϵ1(ω) begins to exhabit negative values at 3.85 eV and reaches its

maximum negative values at 5.00 eV. From Figure 5.5(b) Zr2NiB represent its peak

value around 0.8 eV. Peaks represent charge carriers shifting from filled to empty

bands. As energy increases, ϵ2(ω) begins to decrease and approaches zero at around

12 eV.
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3.5.2 Absorption coefficient

The absorption coefficient is used to calculate how far into a material light of a

specific wavelength can penetrate before being absorbed. Light is only poorly ab-

sorbed when a material has a low absorption coefficient.. Figures 3.6(c) represents

the absorption coefficient of Zr2NiB alloys. Peaks become more prominent around
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Figure 3.6: c) Absorption coefficient d) Optical conductivity

3 eV and continue to increase up to 11.1 eV, indicating that the highest value of

Absorption Coefficient exists in the UV region.

3.5.3 Optical conductivity

Optical conductivity is a material property that describes the interaction between

the induced current density in the material and the magnitude of the inducing

electric field for arbitrarily selected frequencies. The optical conductivity along with

its energy is illustrated in Figure 3.6(d). From the optical conductivity curve, it is

obvious that conductivity increases as energy increases. The maximum conductivity

peaks are obtained at 4 eV. Following an oscillatory trend, optical conductivity

begins to decrease and eventually reaches zero for higher energy values. the optical

curve reveals that the absorbed light spent the conductivity in the UV region.

3.5.4 Refractive index

The refractive index is another important physical quantity that describes the optical

properties of any given material. The refractive index of a meterial, gives how much
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a path of light is bent when it enters that material. It is also known that the
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Figure 3.7: e) Refractive index f) Reflectivity

refractive indices are inversely related to the bandgap, if refractive index increases

corresponding bandgap decreases. refractive index vs energy curve represent in

Figure 3.7(e). It can be seen that in the low energy limit, the refractive index has

a high value.. This indicated that increased the metallic behavior of Zr2NiB alloy,

efractive index deceases suddenly from the infrared region.

3.5.5 Optical reflectivity

The reflactance of a material is measured when light is incident on the surface of

the material. The optical reflectivity plots show that the static values of reflectivity

range from 0.66 to 0.68, with the reflectivity spectrum being minimum in the IR and

visible regions and peaking in the vacuum UV region at higher energies. Reflectivity

vs energy curve represent in Figure 3.7(f). Moreover, the reflectivity plots show

the same behavior in the Near UV, Mid UV, and Deep UV regions. The greatest

reflectivity is observed. The optical reflactivity is very high it represents the strong

metallic characteristic of the Zr2NiB compound.
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Chapter 4

Conclusions

In this work, we have studied the structural properties phase of Zr2NiB Heusler alloys

using FP-LAPW method performed in WIEN2k code within GGA-PBE exchange

correlation to survey the the structural, electronic, magnetic, and optical properties.

According to the total energy versus unit cell volume diagram, the equilibrium

lattice constant is found to be 6.2656Å. To investigate the investigate the electronic

properties the diagrams of spin-polarized band structure of Zr2NiB compounds and

DOS, PDOS were plotted. Also found that these compounds for the spin-up and

spin-down have no band gap that conforms their metalic properties. The Density

of states also revealed the metalic nature of these compound. The obtained total

magnetic moment for Full Heusler compounds was 0.99 µB. It is clear that that the

value of the total magnetic moment is contributed by Zr atoms. In this work, also

calculated optical properties using FP-LAPW method, the real and imaginary parts

of dielectric function, reflectivity, absorption coefficient and optical conductivity.

Curve of the real part of dielectric function versus energy show that there is metalic

property in very low energies.
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List of Abbreviations

BZ : Brillouin Zone

DFT : Density Functional Theory

DOS : Density of States

FP-LAPW : Full-Potential Linearized Augmented Plane Wave

GGA : Generalized Gradient Approximation

HF : Hartree-Fock

HK : Hohenberg-Kohn

HM : Half-Metallic

KS : Kohn-Sham

SP : Spin Polarization

XC : Exchange correlation
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[10] Antoni Planes, Llúıs Mañosa, and Avadh Saxena. Magnetism and structure in

functional materials. 1, 2005.

[11] I Galanakis, Ph Mavropoulos, and Ph H Dederichs. Electronic structure and

slater–pauling behaviour in half-metallic heusler alloys calculated from first

principles. Journal of Physics D: Applied Physics, 39(5):765, 2006.

[12] Peter Entel, VD Buchelnikov, VV Khovailo, AT Zayak, WA Adeagbo,

ME Gruner, HC Herper, and EF Wassermann. Modelling the phase diagram of

magnetic shape memory heusler alloys. Journal of Physics D: Applied Physics,

39(5):865, 2006.
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