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Abstract

The electronic, magnetic, and optical properties of cerium phosphide (CeP) are

studied in this work by using the full-potential linearized augmented plane wave

(FP-LAPW) approach in the framework of the density functional theory (DFT).

The generalized gradient approximation proposed by Perdew, Burke, and Ernzerhof

(GGA-PBE) and Tran-Blaha modified Becke-Johnson (TB-mBJ) approaches are

used to approximate the exchange correlation potential. Both zinc-blende (ZB) and

rock salt (RS) type structures of CeP are used to calculate the ferromagnetic (FM)

and non-magnetic (NM) phases. The results show that, the calculations of the to-

tal energy are clearly favor the ground state and the equilibrium lattice constants

are in good agreement with exprimental values. For the FM phase of the ZB type

structure, the electronic band structure and density of state (DOS) calculations re-

veal a band gap, represent CeP has semiconducting behavior. The total magnetic

moment of this type structure follows the Slater-Pauling rule. Ability of CeP for

optoelectronic device manufacturing is demonstrated by estimated optical parame-

ters such as dielectric function, refractive index, reflectivity, absorption coefficient,

and conductivity.
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Chapter 1

Introduction

Semiconductors are essential in modern technology and provides us a comfortable

existence on this planet. Because of their excellent electronic, magnetic and opti-

cal properties, they exhibit many fascinating applications with light-emitting and

laser diodes, transistors, IC’s, circuit fabrication, solar cells, organic Nano-Radio

Frequency Identification Devices, Metal Insulator Semiconductor Photo-detectors,

Electro-Optic Waveguide Modulators, and heterostructure lasers [1, 2]. Early re-

search on rare earth elements reveal their semiconducting and other intriguing char-

acteristics. Our investigated compound CeP also shows semiconducting behavior

with indirect bandgap, where Ce is classified as a rare-earth element in the periodic

table. Since rare-earth elements are an important part of many high-tech products,

this calculation with CeP provides an excellent electronic, magnetic, and optical

properties [3]. Our calculation is done for FM and NM phases of both ZB and

RS type structures, and we find that the FM phase of the ZB type structure has

more interesting electronic and optical properties [4, 5]. The band structure calcu-

lation, of this ferromagnetic ZB type structure gives an indirect bandgap between

the conduction and the valence band, which represent the semiconducting feature

of it. Semiconducting behavior of CeP must be fascinating because they play such

a crucial part in modern electronics. The study of CeP brings us closer to future
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Introduction

calculations for more fascinating systems, potentially opening a new era in modern

electronics. The goal of this report is to calculate the electronic, magnetic, and opti-

cal properties of CeP compound using first-principles calculations based on density

functional theory (DFT) and the full potential linearized augmented plane waves

(FP-LAPW) [6] method as implemented in the WIEK2k code [7], which is a For-

tran computer program for solving the Kohn-Sham equations of DFT. Because of

their widespread use in spintronic applications, rare-earth elements become an es-

sential members of the periodic table. Spintronics are the study of the intrinsic spin

of electrons and the magnetic moment associated with it. Our CeP-based calcula-

tion exhibits a variety of intriguing characteristics, such as semiconducting behavior

for its ferromagnetic ordering. By observing this calculation we can make more in-

teresting future investigation, which expand the spintronic fields. This research is

divided into four sections: 1. Introduction, 2. Density Functional Theory, 3. Elec-

tronic, magnetic and optical properties of CeP, and 4. Conclusion. In chapter 1 we

highlight the most important and promising uses of our compound CeP. We discuss

basic quantum mechanics and density functional theory in chapter 2, and our cal-

culations are based on this theory. We explained and interpreted the findings of our

calculations in chapter 3. In this chapter we also discuss why CeP is a fascinating

ingredient. In chapter 4 we examined that CeP is a potential candidate as a future

applicant.
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Chapter 2

Density Functional Theory

2.1 Schrödinger equation

Erwin Schrödinger’s attempt to describe the so-called ‘matter wave’ in 1926, which

is named after him. The time-dependent single particle Schrödinger equation,

i~
∂

∂t
Ψ(~r, t) = ĤΨ(~r, t) (2.1)

It is a linear and homogeneous equation for the wave function Ψ [8]. Where the

Hamiltonian

Ĥ = T̂ + V̂ = − ~2

2m
~∇2 + V (~r, t) (2.2)

Which gives the time-dependent Schrödinger equation for a particle moving in a

potential

i~
∂

∂t
Ψ(~r, t) = [− ~2

2m
~∇2 + V (~r, t)]Ψ(~r, t) (2.3)

For N particles in three dimensions the Hamiltonian is,

Ĥ =
N∑
i

p̂2
i

2mi

+ V (~r1, ~r2, ..., ~rN , t) = −~2

2

N∑
i=1

1

mi

+ V (~r1, ~r2, ..., ~rN , t) (2.4)

3



Density Functional Theory

The corresponding Schrödinger equation reads

i~
∂

∂t
Ψ(~r1, ~r2, ..., ~rN , t) = [−~2

2

N∑
i=1

1

mi

~∇2 + V (~r1, ~r2, ..., ~rN , t)]Ψ(~r1, ~r2, ..., ~rN , t)

(2.5)

This is the time-dependent Schrödinger equation for many-body system. When

the Hamiltonian itself has no time-dependency then we get the time-independent

Schrödinger equation. In this case the potential does not depend on time, like as

V (~r1, ~r2, ..., ~rN , t). So the Hamiltonian

Ĥ = − ~2

2m
~∇2 + V (~r) (2.6)

The time-independent equation is obtained by the approach of separation of vari-

ables. The spatial and temporal part of the wave function can be separated by this

way,

Ψ(~r1, ~r2, ..., ~rN , t) = Ψ(~r1, ~r2, ..., ~rN)τ(t) = Ψ(~r1, ~r2, ..., ~rN).e−iωt (2.7)

So, the time-independent Schrödinger equation for many-body system can be written

as

EΨ(~r1, ~r2, ..., ~rN) = [−~2

2

N∑
i=1

1

mi

∇2
i + V (~r1, ~r2, ..., ~rN)]Ψ(~r1, ~r2, ..., ~rN) (2.8)

The general eigenvalue equation becomes as

EΨ(~r1, ~r2, ..., ~rN) = ĤΨ(~r1, ~r2, ..., ~rN) (2.9)

2.2 The wave function

In the previous section we can see the detail about Schrödinger equation, where the

term wave function was repeatedly used. The Schrödinger equation determines how

wave functions evolve over time. In this section we can see about the wave function.

The first and most important postulate is that the state of a particle is completely

described by it’s (time-dependent) wave function, i.e. the wave function contains all

4
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information about the particle’s state [9]. The wave function itself has no physical

interpretation. The square of the absolute value of the wave function has a physical

interpretation and known as a probability density

|Ψ(~r1, ~r2, ..., ~rN)|2d~r1, d~r2, ..., d~rN . (2.10)

Equation (2.10) describes the probability that particles 1, 2, ....., N are located simul-

taneously in the corresponding volume element d~r1, d~r2, ..., d~rN [10]. If the positions

of two particles are exchanged the overall probability density cannot depend on such

an exchange, i.e.

|Ψ(~r1, ~r2, ..., ~ri, ~rj, ..., ~rN)|2 = |Ψ(~r1, ~r2, ..., ~ri, ~rj, ..., ~rN)|2 (2.11)

The integral of the probability density overall the system’s degrees of freedom must

be 1 in accordance with the probability interpretation. This general requirement

that a wave function must satisfy is called the normalization condition. Which is,

∫
d~r1

∫
d~r2...

∫
d~rN |Ψ(~r1, ~r2, ..., ~rN)|2 = 1 (2.12)

This condition is also required for a physical acceptable wave function. The wave

function must be continuous over the full spatial range and square-integratable [11].

We can calculate expectation values of operators with a wave function provides the

expectation value of the corresponding observable for that wave function [12]. For

an observable O(~r1, ~r2, ..., ~rN) written as,

O = 〈O〉 =

∫
d~r1

∫
d~r2...

∫
d~rNΨ∗(~r1, ~r2, ..., ~rN)ÔΨ(~r1, ~r2, ..., ~rN) (2.13)

5
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2.3 Born-Oppenheimer (BO) approximation

The Hamiltonian of a many-body system consisting of nuclei and electrons can be

written as:

Htot = −
∑
I

~2

2MI

∇2
~RI
−
∑
i

~2

2me

∇2
~ri

+
1

2

∑
I,J
I 6=J

ZIZJe
2

|~RI − ~RJ |
+

1

2

∑
i,j
i 6=j

e2

|~ri − ~rj|
−
∑
I,i

ZIe
2

|~RI − ~ri|

(2.14)

Where the indexes I,J run on nuclei, i and j on electrons, ~RI and MI are positions

and masses of the nuclei, ~ri and me of the electrons, ZI the atomic number of nucleus

I. The first term is the kinetic energy of the nuclei, the second term is the kinetic

energy of the electrons, the third term is the potential energy of nucleus - nucleus

Coulomb interaction, the fourth term is the potential energy of electron-electron

Coulomb interaction and the last term is the potential energy of nucleus-electron

Coulomb interaction. The time-independent Schrödinger equation for the system

HtotΨ({~RI}, {~ri}) = EΨ({~RI}, {~ri}) (2.15)

Where Ψ({~RI}, {~ri}) is the total wave function of the system. By solving the above

Schrödinger equation we get wave function, which can provide everything about

the system. It is quietly impossible to solve it in practice and approximation is

needed. A so-called Born-Oppenheimer approximation was made by Born and Op-

penheimer [13] in 1927. Since the nuclei are much heavier than electrons, the nuclei

move much slower than the electrons. Therefore we can separate the movement of

nuclei and electrons. So, the electronic wave function depends upon only the nuclear

position but does not depend upon their velocities. The total wave function can be

written as

Ψ({~RI}, {~ri}) = Θ({~RI})φ({~ri}; {~RI}) (2.16)

Where Θ({~RI})describe the nuclei and φ({~ri}; {~RI}) the electrons. So, we can write

the Schrödinger equation into two separate equation

Heφ({~ri}; {~RI}) = V ({~RI})φ({~ri}; {~RI}) (2.17)

6
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Where

He = −
∑
i

~2

2me

∇2
~ri

+
1

2

∑
I,J
I 6=J

ZIZJe
2

|~RI − ~RJ |
+

1

2

∑
i,j
i 6=j

e2

|~ri − ~rj|
−
∑
I,i

ZIe
2

|~RI − ~ri|
(2.18)

and

[−
∑
I

~2

2MI

∇2
~RI

+ V ({~RI})]Θ({~RI}) = E ′Θ({~Ri}) (2.19)

Equation (2.17) is the equation for the electronic problem with the nuclei positions

fixed. The significance of the BO approximation is to separate the movement of

electrons and nuclei.

2.4 The Hartree-Fock approach

The Hartree-Fock method seeks to approximately solve the electronic Schrödinger

equation, and it assumes that the wave function can be approximated by a single

slater determinant made up of one spin orbital per electron. Hence, for now only

the electronic Schrödinger equation is of interest, therefore in the following sections

we set Ĥ ≡ Ĥel , E ≡ Eel, and so on. The energy as observable corresponding to

the Hamilton operator, therefore the energy can be calculated as

E = 〈Ĥ〉 =

∫
d~r1

∫
d~r2...

∫
d~rNΨ∗(~r1, ~r2, ..., ~rN)ĤΨ(~r1, ~r2, ..., ~rN) (2.20)

The central idea of the Hartree-Fock approach is that the energy obtained by any

trial wave function and

Etrial ≥ E0 (2.21)

Where, E0 is the lowest or ground state energy of the system.

Etrial =

∫
d~r1

∫
d~r2...

∫
d~rNΨ∗trial(~r1, ~r2, ..., ~rN)ĤΨtrial(~r1, ~r2, ..., ~rN) (2.22)

and

E0 =

∫
d~r1

∫
d~r2...

∫
d~rNΨ∗0(~r1, ~r2, ..., ~rN)ĤΨ0(~r1, ~r2, ..., ~rN) (2.23)

7
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In accordance to bra-ket notation [14] equation (2.21) to (2.23) can be written as

〈Ψtrial|Ĥ|Ψtrial〉 = Etrial ≥ E0 = 〈Ψ0|Ĥ|Ψ0〉 (2.24)

Proof: The trial wave function Φtrial can be expressed as linear combination of

the eigenfunctions Ψi ,

Ψtrial =
∑
i

λiΨi (2.25)

This trial wave function is normalized so

〈Ψtrial|Ψtrial〉 = 1 = 〈
∑
i

λiΨi|
∑
j

λjΨj〉 =
∑
i

∑
j

λ∗iλj〈Ψi|Ψj〉 =
∑
j

|λj|2. (2.26)

From equation (2.24) and (2.26) we get

Etrial = 〈Ψtrial|Ĥ|Ψtrial〉 = 〈
∑
i

λiΨi|Ĥ|
∑
j

λjΨj〉 =
∑
j

Ej|λj|2. (2.27)

Also,

Etrial =
∑
j

Ej|λj|2 ≥ E0

∑
j

|λj|2. (2.28)

The mathematical framework used above, i.e. rules which assign numerical values to

functions, so called functional, is also one of the main concept in density functional

theory. A function gets a numerical input and generates a numerical output whereas

a functional gets a function as input and generates a numerical output [15]. Equa-

tions (2.20) to (2.28) also include that a search for the minimal energy value while

applied on all allowedN -electron wave functions will always provide the ground-state

wave function. Expressed in terms of functional calculus, where Ψ → N addresses

all allowed N -electron wave functions, that is

E0 = min
Ψ→N

E[Ψ] = min
Ψ→N
〈Ψ|Ĥ|Ψ〉 = min

Ψ→N
〈Ψ|T̂ + V̂ + Û |Ψ〉. (2.29)

In the Hartree-Fock approach, the search is restricted to approximations of the N -

electron wave function by an antisymmetric product of N one-electron wave func-

tions, the so called spin-orbitals Xi(~xi). A wave function of this type is called

8
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slater-determinant, and reads

Ψ0 ≈ φSD = (N !)−
1
2

∣∣∣∣∣∣∣∣∣∣∣∣

X1(~x1) X2(~x1) · · · XN(~x1)

X1(~x2) X2(~x2) · · · XN(~x2)
...

...
. . .

...

X1(~xN) X2(~xN) · · · XN(~xN)

∣∣∣∣∣∣∣∣∣∣∣∣
(2.30)

Returning to the variational principle and equation (2.29), the ground state energy

approximated by a single slater determinant becomes

E0 = min
φSD→N

E[φSD] = min
φSD→N

〈φSD|Ĥ|φSD〉 = min
φSD→N

〈φSD|T̂ + V̂ + Û |φSD〉 (2.31)

A general expression for the Hartree-Fock energy is obtained by usage of the Slater

determinant as a trial function

EHF = 〈φSD|Ĥ|φSD〉 = 〈φSD|T̂ + V̂ + Û |φSD〉 (2.32)

The final expression for the Hartree-Fock energy contains three major parts:

EHF = 〈φSD|Ĥ|φSD〉 =
N∑
i

(i|ĥ|i) +
1

2

N∑
i

N∑
j

[(ii|jj)− (ij|ji)] (2.33)

With

(i|ĥi|i) =

∫
X∗i (~xi)[−

1

2
~∇2
i −

M∑
k=1

Zk
rik

]Xi(~xi)d~xi, (2.34)

(ii|jj) =

∫∫
|Xi(~xi)|2

1

rij
|Xj(~xj)|2d~xid~xj, (2.35)

(ii|jj) =

∫∫
Xi(~xi)X

∗
j (~xj)

1

rij
Xj(~xj)X

∗
i (~xi)d~xid~xj. (2.36)

The first term corresponds to the kinetic energy and the nucleus-electron inter-

actions, ĥ denoting the single particle contribution of the Hamiltonian, whereas

the latter two terms correspond to electron-electron interactions. They are called

Coulomb and exchange integral, respectively. Examination of equations (2.33) to

(2.36) furthermore reveals, that the Hartree-Fock energy can be expressed as a func-

tional of the spin orbitals EHF = E[Xi]. Thus, variation of the spin orbitals leads to

9
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the minimum energy. The spin orbitals remain orthonormal during minimization,

so we get

f̂Xi = λiXi i = 1, 2, ..., N (2.37)

With

f̂i = −1

2
~∇2
i −

M∑
k=1

Zk
rik

+
N∑
i

[Ĵj(~xi)− K̂j(~xi)] = ĥi + V̂ HF (i), (2.38)

the Fock operator for the i-th electron. Where, the first two terms represent the

kinetic and potential energy due to nucleus-electron interaction, collected in the core

Hamiltonian ĥi, whereas the latter terms are sums over the Coulomb operators Ĵj

and the exchange operators K̂j with the other j electrons, which form the Hartree-

Fock potential V̂ HF . There the major approximation of Hartree-Fock can be seen.

The two electron repulsion operator from the original Hamiltonian is exchange by a

one-electron operator V̂ HF . which describes the repulsion in average.

2.4.1 Limitations and failings of the Hartree-Fock approach

Since a many electron wave function cannot be described entirely by a single Slater

determinant, the energy obtained by HF calculations is always larger than the exact

ground state energy. The most accurate energy obtainable by HF-methods is called

the Hartree-Fock-limit. The difference between EHF and Eexact is called correlation

energy and can be denoted as [16]

EHF
corr = Emin − EHF (2.39)

2.5 The electron density

In an electronic system, the number of electrons per unit volume in a given state is

the electron density for that state. For a system of N electrons with wave function

Ψ the electron density is defined as

n(~r) = N
∑
s1

∫
d~x2...

∫
d~xNΨ∗(~x1, ~x2, ..., ~xN)Ψ(~x1, ~x2, ..., ~xN). (2.40)

10
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Which is the basic variable of density functional theory. If the spin coordinates are

neglected, the electron density can even be expressed as measurable observable only

dependent on spatial coordinates

n(~r) = N

∫
d~r2...

∫
d~rNΨ∗(~r1, ~r2, ..., ~rN)Ψ(~r1, ~r2, ..., ~rN). (2.41)

The total number of electron can be obtained by integration the electron density

over the spatial variables

N =

∫
d~rn(~r). (2.42)

2.6 Thomas-Fermi model

The predecessor to DFT was the Thomas-Fermi model named after Llewellyn Thomas

and Enrico Fermi [17] in 1927. In this method, they uesd the electron density n(~r)

as the basic variable instead of the wave function. The total energy of a system in

an external potential Vext(~r) is written as a functional of the electron density n(~r)

as:

ETF [n(~r)] = A1

∫
n(~r)

5
3d~r +

∫
n(~r)Vext(~r)d~r +

1

2

∫∫
n(~r)n(~r′)

|~r − ~r′|
d~rd~r′ (2.43)

Where the first term is the kinetic energy of the non-interacting electrons in a

homogeneous electron gas (HEG) with A1 = 3
10

(3π2)
2
3 in atomic units. The kinetic

energy density of a HEG is obtained by adding up all of the free-electron energy

state εk = k2

2
up to the Fermi wave vector kF = [3π2n(~r)]

1
3 as:

t0[n(~r)] =
2

(2π)3

∫ kF

0

k2

2
4πk2dk = A1n(~r)

5
3 (2.44)

The second term is the classical electrostatic energy of the nucleus-electron Coulomb

interaction. The third term is the classical electrostatic Hartree energy approxi-

mated by the classical Coulomb repulsion between electrons. In 1930, Dirac ex-

tended the Thomas-Fermi method by adding a local exchange term A2

∫
n(~r)

4
3d~r to

11
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equation (2.43) with A2 = −3
4
( 3
π
)
1
3 , which leads equation (2.43) to

ETFD[n(~r)] = A1

∫
n(~r)

5
3d~r+

∫
n(~r)Vext(~r)d~r+

1

2

∫∫
n(~r)n(~r′)

|~r − ~r′|
d~rd~r′+A2

∫
n(~r)

4
3d~r

(2.45)

The solution can be found as

δ{ETFD[n(~r)]− µ(

∫
n(~r)−N)} = 0 (2.46)

Where µ is the chemical potential. Equation (2.46) leads to the Thomas-Fermi-Dirac

equation

5

3
A1

∫
n(~r)

2
3 + Vext(~r) +

∫
n(~r′)

|~r − ~r′|
d~r′ +

4

3
A2n(~r)

1
3 − µ = 0 (2.47)

Which can be solved directly to obtain the ground state density. The most serious

one is that the theory fails to describe bonding between atoms, thus molecules and

solids cannot form in this theory [18]. Although it is not good enough to describe

electrons in matter, its concept to use electron density as the basic variable illustrate

the way DFT works.

2.7 The Hohenberg-Khon theorems

The heart of DFT is the Hohenberg-Kohn (HK) theorem. This theorem is invented

by Hohenberg and Kohn in 1964. This theorem tells us that not only n(~r) is a

functional of v(~r) but that also v(~r) is up to a constant determined by n(~r) uniquely.

The electronic Hamiltonian operator be written as Ĥel = T̂ + V̂ + Û , Where V̂

represent the external potential. The energy of the system can be denoted as

E = 〈Ψ|Ĥ|Ψ〉 = 〈Ψ|T̂ + V̂ + Û |Ψ〉 =

∫
v(~r)n(~r)d~r + 〈Ψ|T̂ + Û |Ψ〉 (2.48)

Which will be used for the proof of Hohenberg and Kohn’s first theorem.

12
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2.7.1 Theorem 1

The external potential v(~r) is a functional of the electron density n(~r) and, up to

an unimportant constant, uniquely determined by it.

Proof: For simplicity, here only consider the case that the ground state of the

system is nondegenerate. It is assumed that there exist two external potentials v(~r)

and v′(~r) which differ by more than just a trivial constant also both potentials give

rise to the same electron density n(~r). The Hamiltonian Ĥ and Ĥ ′, the wave function

Ψ and Ψ′ are different from each other also the energies E and E ′ associated with

the particular wave function different. Then the expression,

E ′0 = 〈Ψ′|Ĥ ′|Ψ′〉 < 〈Ψ|Ĥ ′|Ψ〉 = 〈Ψ|Ĥ+V̂ ′−V̂ |Ψ〉 = 〈Ψ|Ĥ|Ψ〉+〈Ψ|V̂ ′−V̂ |Ψ〉 (2.49)

and

E0 = 〈Ψ|Ĥ|Ψ〉 < 〈Ψ′|Ĥ ′|Ψ′〉 = 〈Ψ′|Ĥ ′ + V̂ − V̂ ′|Ψ′〉 = 〈Ψ′|Ĥ ′|Ψ′〉+ 〈Ψ′|V̂ − V̂ ′|Ψ′〉

(2.50)

are obtained. By the use of (2.48), this can be rewritten as

E0 < E0 +

∫
[v′(~r)− v(~r)]n(~r)d~r (2.51)

and

E0 < E ′0 +

∫
[v(~r)− v′(~r)]n(~r)d~r (2.52)

By summation of (2.51) and (2.52) the inequality

E ′0 + E0 < E0 + E ′0 (2.53)

is obtained, which represents an inconsistency and therefore provides by reductioadabsurdum

the proof that v(~r) is truly a unique functional of n(~r).

13
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2.7.2 Theorem 2

The ground state energy can be derived from the electron density by the use of

variational calculus. The electron density, which provides a minimum of the ground

state energy, is therefore the exact ground state density. Since the wave function is

a unique functional of the electron density, every trial wave function Ψ′ corresponds

to a trial density n′(~r) following equation(2.41). According to the Rayleigh-Ritz

principle, the ground state energy is obtained as

Ev,0 = min
Ψ′
〈Ψ′|Ĥ|Ψ′〉 (2.54)

Proof: In principle, the minimization can be carried out in two steps. In the first

step, a trial electron density n′(~r) is fixed. The class of trial functions corresponding

to that electron density is then denoted by Ψ′αn′ . Then, the constrained energy

minimum is defined as

[Ev[n
′(~r)]] ≡ min

α
〈Ψ′αn′|Ĥ|Ψ′αn′〉 =

∫
v(~r)n′(~r)d~r + F [n′(~r)]. (2.55)

In that notation, F [n′(~r)] is the universal functional

F [n′(~r)] ≡ min
α
〈Ψ′αn′ |T̂ + Û |Ψ′αn′〉 (2.56)

Equation (2.55) is minimized over all trial densities n′(~r):

Ev,0 = min
n′(~r)

Ev[n
′(~r)] = min

n′(~r)
{
∫
v(~r)n′(~r)d~r + F [n′(~r)]} (2.57)

Now, for a non-degenerate ground state, the energy in 2.57 is attained, if n′(~r) is

the actual ground state density. It has been shown that density functional theory

provides a clear and mathematical exact framework for the use of the electron density

as base variable. Nevertheless, nothing of what has been derived is of practical use.

In other words, the Hohenberg-Kohn theorems, as important as they are, do not

provide any help for the calculation of molecular properties and also do not provide

any information about approximations for functional like F [n′(~r)]. This difficulties

14
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was overcome by Kohn and Sham in 1965, who proposed the well known Kohn-Sham

equations.

2.8 The Kohn-Sham (KS) equations

The KS method was so successful that Khon was honored the Nobel prize in chem-

istry in 1998. This method puts Hohenberg-Kohn theorems into practical use and

makes DFT calculations possible with even a single personal computer. The most

desirable way in which quantities can be calculated for problems without an exact

analytical solution is one that allows iterations. An early example of an iterative

approach are the self-consistent single particle Hartree equations. Hartree’s approx-

imation assumes that every electron moves in an effective single-particle potential

of the form

vH(~r) = − Z
|~r|

+

∫
n(~r′)

|~r − ~r′|
d~r′. (2.58)

The first term is an attractive Coulomb potential of a nucleus with atomic number Z,

whereas the integral term corresponds to the potential caused by the mean electron

density distribution n(~r). The mean density can be denoted in terms of the single

particle wave functions

n(~r) =
M∑
j=1

|φj(~r)|2. (2.59)

It is important to mention that the sum in (2.59) runs over the M lowest eigenvalues

in accordance to the Pauli principle. The 3N-dimensional Schrödinger equation for

electrons moving in an effective potential written as

[−1

2
~∇2 + vH(~r)]φj(~r) = εjφj(~r) j = 1, ..., N (2.60)

Therefore, Khon and Sham investigated the density functional theory applied to a

system of N non-interacting electrons in an external potential, similar to Hartree’s

approach. Recalling (2.55) and (2.56), the expression for the energy of such a system

is of the form

Ev(~r)[n
′(~r)] ≡

∫
v(~r)n′(~r)d~r + TS[n′[(~r)] ≥ E (2.61)
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Where n′(~r) is a v-representable density for non-interacting electrons and TS[n′[(~r)]

the kinetic energy of the ground state of those non-interacting electrons [19]. Set up

of the Euler-Lagrange equation for the non-interacting case (2.61) with the density

defined in (2.59) as argument provides

δEv[n
′(~r)] ≡

∫
δn′(~r)[v(~r) +

δ

δn′(~r)
TS[n′[(~r)]|n′(~r)=n(~r) − ε]d~r = 0 (2.62)

With n′(~r), the exact ground state density for the potential v(~r), and the Lagrangian

multiplier ε to ensure particle density conservation. For a system of non-interacting

electrons, the total ground state energy and particle density can therefore simply be

denoted as the sums

E =
N∑

(j=1)

εj (2.63)

and

n(~r) =
N∑

(j=1)

|φj(~r)|2. (2.64)

In addition, Kohn and Sham used the universal functional in equations (2.55) to

(2.57) as an alternative formulation, namely

F [n′(~r)] ≡ TS[n′(~r)] +
1

2

∫
[n′(~r)][n′(~r′)]

|~r − ~r′|
d~rd~r′ + Exc[n

′(~r)] (2.65)

In (2.65) TS[n′(~r)] is the kinetic energy functional of non-interacting electrons and

the second term is the so-called Hartee term which describes the electrostatic self-

repulsion of the electron density. The last term is called exchange-correlation term.

It is implicitly defined by (2.65) and can in practice only be approximated. The

quality of the approximation for Exc[n
′(~r)] is therefore one of the key issues in DFT.

Construction of the Euler-Lagrange equations for the interacting case in equation

(2.65) provides

δEv[n
′(~r)] ≡

∫
δn′(~r)[veff (~r) +

δ

δn′(~r)
TS[n′[(~r)]|n′(~r)=n(~r) − ε]d~r = 0 (2.66)

with

veff (~r) ≡ v(~r) +

∫
[n(~r′)]

|~r − ~r′|
d~r′ + vxc(~r) (2.67)
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and the functional derivative

vxc(~r) ≡
δ

δn′(~r)
Exc[n

′(~r)]|n′(~r)=n(~r) (2.68)

Whereas the Euler-Lagrange equation resembles (2.68) up to the potential term.

Because of that, the minimizing density can be calculated in a way similar to the

Hartree-approach described in equations (2.58) to (2.60). The corresponding equa-

tions are the single-particle Schrödinger equation

[−1

2
~∇2 + veff (~r)]φj(~r) = εjφj(~r) j = 1, ..., N (2.69)

as well as the defining equation for the particle density

n(~r) =
M∑
j=1

|φj(~r)|2, (2.70)

Which form together with the effective potential veff in (2.67) the self-consistent

Kohn-Sham equations. The accurate ground state energy, as one of the most im-

portant quantities, can be expressed as

E =
∑
j

εj + Exc[n(~r)]−
∫
vxc(~r)n(~r)dv − 1

2

∫
[n(~r′)][n(~r′)]

|~r − ~r′|
d~rd~r′ (2.71)

Equation (2.71) can be seen as an generalization of the energy expression obtained

with the Hartree-approach. Similar to the Hohenberg-Kohn theorems, also equations

(2.69) to (2.71) are formally exact, which means, if exact Exc[n(~r)] and vxc[n(~r)]

would be used, one would obtain the exact solution.
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Initial guess

n(r)

Calculate effective potential

Veff (r) = Vext(r) + VHartee[n] + Vxc[n]

Solve KS equation

[− ~2
2m
52 +Veff (r)]ψi(r) = εmeψi(r)

Calculate electron density

n(r) =
∑N

i=1 ψ
∗
i (r)ψi(r)

Self-consistent? Go to first stage

Output quantities

Potential Energy, Static structure, Born effective charges, etc...

Stop

yes

no

2.9 Exchange-correlation (XC) functionals

Jacob’s Ladder of XC functionals Heaven of chemical accuracy. It is crucial to

have an accurate XC energy functional EXC [n(~r)] in order to give a satisfactory

description of a realistic condensed matter system. The most widely used approx-

imation for the XC potential are the local density approximation (LDA) and the

generalized-gradient approximation (GGA).
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2.9.1 Local (spin) Density Approximation (LDA)

The accuracy of DFT depends on its ability to approximate the unknown exchange-

correlation (XC) part of the KS functional. The local density approximation (LDA)

is the most common approximation to the XC potential Vxc. The LDA is tradi-

tionally based on knowledge of the energy of the infinite three-dimensional (3D)

homogenous electron gas [20]. The XC energy per electron at a point ~r is considered

the same as that for a homogeneous electron gas (HEG) that has the same electron

density at the point ~r. The total exchange-correlation functional EXC [n(~r)] can be

written as

ELDA
XC [n(~r)] =

∫
n(~r)εhomXC (n(~r))d~r

=

∫
n(~r)[εhomX (n(~r)) + εhomC (n(~r))]d~r

= ELDA
X [n(~r)] + ELDA

C [n(~r)] (2.72)

for spin unpolarized systems and

ELSDA
XC [n↑(~r), n↓(~r)] =

∫
n(~r)εhomXC (n↑(~r), n↓(~r))d~r (2.73)

for spin polarized systems [21], where the XC energy density εhomXC (n(~r)) is a func-

tion of the density alone, and is decomposed into exchange energy density εhomX (n(~r))

and correlation energy density εhomC (n(~r)) so that the XC energy functional is decom-

posed into exchange energy functional ELDA
X [n(~r)] and correlation energy functional

ELDA
C [n(~r)] linearly. Note that ELSDA

XC [n↑(~r), n↓(~r)] is not written in the way

ELSDA
XC [n↑(~r), n↓(~r)] =

∫
[n↑(~r)ε

hom
XC ,↑ (n↑(~r)) + n↓(~r)ε

hom
XC ,↓ (n↓(~r))]d~r (2.74)

as one may think. The exchange energy functional ELDA
X [n(~r)] employs the expres-

sion for a HEG by using it point wise, which is known analytically as

ELDA
X [n(~r)] =

∫
n(~r)εhomX (n(~r))d~r = −3

4
(
3

π
)

1
3
∫
n(~r)

4
3d~r (2.75)
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where

εhomX (n(~r)) = −3

4
(
3

π
)

1
3

n(~r)
1
3 (2.76)

is the exchange energy density of the unpolarized HEG introduced first by Dirac.

Analytic expressions for the correlation energy of the HEG are unknown except in

the high and low density limits corresponding to infinitely weak and infinitely strong

correlations. The expression of the correlation energy density of the HEG at high

density limit has the form

εC = A ln(rs) +B + rs(Cln(rs) +D) (2.77)

and the low density limit takes the form

εC =
1

2
(
g0

rs
+
g1

r
3
2
s

+ ...) (2.78)

where the Wigner-Seitz radius rs is related to the density as

4

3
πr3

s =
1

n
. (2.79)

In order to obtain accurate values of the correlation energy density at intermediate

density, accurate quantum Monte Carlo (QMC) simulations for the energy of the

HEG are needed and have been performed at several intermediate density values.

Most local density approximations to the correlation energy density interpolate these

accurate values from QMC simulations while reproducing the exactly known limiting

behaviour. Depending on the analytic forms used for εC , different local density

approximation imations were proposed including Vosko-Wilk-Nusair [22] (VWM),

Perdew-Zunger [23], Cole-Perdew [24] (CP) and Perdew-Wang [25] (PW92). For

spin polarized systems, the exchange energy functional is known exactly from the

result of spin-unpolarized functional:

EX [n↑(~r), n↓(~r)] =
1

2
(EX [2n↑(~r)] + EX [2n↓(~r)]) (2.80)
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The spin-dependence of the correlation energy density is approached by the relative

spin-polarization:

ζ(~r) =
n↑(~r)− n↓(~r)
n↑(~r) + n↓(~r)

(2.81)

The spin correlation energy density εC(n(~r), ζ(~r)) is so constructed to interpolate

extreme values ζ = 0,±1, corresponding to spin-unpolarized and ferromagnetic

situations. The XC potential VXC(~r) in LDA is

V LDA
XC =

δELDA
XC

δn(~r)
= εXC(n(~r)) + n(~r)

∂εXC(n(~r))

∂n(~r)
(2.82)

Within LDA, the total energy of a system is:

Etot[n(~r)] = TS[n(~r)] + EH [n(~r)] + EXC [n(~r)] +

∫
n(~r)Vext(~r)d~r

=
occ.∑
i

〈Ψi(~r)| −
1

2
∇2|Ψi(~r)〉+ EH [n(~r)] + EXC [n(~r)] +

∫
n(~r)Vext(~r)d~r

=
occ.∑
i

〈Ψi(~r)| −
1

2
∇2 + VH(~r) + VXC(~r) + Vext(~r)|Ψi(~r)〉

−
occ.∑
i

〈Ψi(~r)|VH(~r)|Ψi(~r)〉 −
occ.∑
i

〈Ψi(~r)|VXC(~r)|Ψi(~r)〉

−
occ.∑
i

〈Ψi(~r)|Vext(~r)|Ψi(~r)〉+ EH [n(~r)] + EXC [n(~r)] +

∫
n(~r)Vext(~r)d~r

=
occ.∑
i

εi −
1

2

∫
[n(~r)][n(~r′)]

|~r − ~r′|
d~rd~r′ +

∫
n(~r)(εXC(~r)− VXC(~r))d~r

=
occ.∑
i

εi −
1

2

∫
[n(~r)][n(~r′)]

|~r − ~r′|
d~rd~r′ +

∫
n(~r)2∂εXC(n(~r))

∂n(~r)
d~r (2.83)

As mentioned before, Etot 6=
∑occ.

i εi. The LDA is very simple, correlation to the

exchange-correlation energy due to the inhomogeneities in the electronic density

are ignored. However it is surprisingly successful and even works reasonably well

in systems where the electron density is rapidly varying. One reason is that LDA

gives the correct sum rule to the exchange-correlation hole. That is, there is a total

electronic charge of one electron excluded from the neighborhood of the electron

at ~r. In the meantime, it tends to underestimate atomic ground state energises

and ionization energies, while overestimating binding energies. It makes large errors
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in predicting the energy gaps of some semiconductors. Its success and limitations

lead to approximations of the XC energy functional beyond the LDA, through the

addition of gradient corrections to incorporate longer range gradient effects (GGA),

as well as LDA+U method to account for the strong correlations of the d electrons

in transition elements and f electrons in lanthanides and actinides.

2.9.2 Generalized-Gradient Approximation (GGA)

As mentioned above, the LDA neglects the inhomogeneities of the real charge den-

sity which could be significantly different from the HEG result. This leads to the

development of various generalized-gradient approximations ( GGAs) which include

density gradient corrections and higher spatial derivatives of the electron density

and give better results than LDA in many cases. Three most widely used GGAs

are the forms proposed by Becke (B88) [26], Perdew et al. [27], and Perdew, Burke

and Enzerhof (PBE) [28]. The definition of the XC energy functional of GGA is the

generalized form in Eq.(2.73) of LSDA to include corrections from density gradient

∇n(~r) as

EGGA
XC [n↑(~r), n↓(~r)] =

∫
n(~r)εhomXC (n↑(~r), n↓(~r), |∇n↑(~r)|, |∇n↓(~r)|, ...)d~r

=

∫
n(~r)εhomXC (n↑(~r), n↓(~r), |∇n↑(~r)|, |∇n↓(~r)|, ...)d~r (2.84)

Where Fxc is dimensionless and εhomX (n(~r)) is the exchange energy density of the

unpolarized HEG as given in Eq. (2.76). Fxc can be decomposed linearly into

exchange contribution Fx and correlation contribution Fc as Fxc = Fx + Fc. GGA

generally works better than LDA, in predicting bond length and binding energy of

molecules, crystal lattice constants, and so on, especially in systems where the charge

density is rapidly varying. However GGA sometimes overcorrects LDA result in ionic

crystals where the lattice constants from LDA calculations fit well with experimental

data but GGA will overestimate it. Nevertheless, both LDA and GGA perform badly

in materials where the electrons tend to be localized and strongly correlated such

as transition metal oxides and rare-earth elements and compounds. This drawback

leads to approximations beyond LDA and GGA.
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Chapter 3

Electronic, magnetic and optical

properties of CeP

Cerium phosphide (CeP) is a cerium-phosphorus inorganic compound with the for-

mula CeP. Phosphanylidynecerium is the IUPAC name for this chemical. Ce is a

rare earth metal with strong acidic and oxidizing properties, whereas P is a highly

reactive non-metallic element in the CeP combination. It is very unstable and does

not dissolve in water. With a molecular weight of 171.09, it has a cubic crystalline

structure.

Figure 3.1: Crystal structure of CeP (a) rock salt and (b) zinc-blende type obtained

with XCrySDen.
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3.1 Method of calculations

Based on first principles calculation the self-consistent scheme are utilized to inves-

tigate the electronic, magnetic and optical characteristics of CeP structures. For

this purpose we use here WIEN2k code, which can solve the Khon-Sham equations.

We choose appropriate approximation for determining the exchange and correlation

energy in Khon-Sham equation, which provides a significant impact on the accuracy

of the final result. The RKmax, K-points, and lattice constant parameters are opti-

mized by using the GGA and mBJ potential but band structure, DOS, and optical

properties are calculated using only the mBJ potential. RKmax = 8.5 is the max-

imum mutual lattice vector utilized in plane wave dilation, and Rmt is the lowest

radius of the muffin-tin sphere. After optimizing the energy, we set this value. The

sizes of the muffin-tin spheres were chosen to be 2.3 a.u. for both Ce and P atoms.

The largest possible vector in charge density Fourier expansion (Gmax) has a mag-

nitude of twelve. Energy and charge convergence criterion are based on 0.00001 Ry

and 0.0001 e, respectively. There was a cut-off energy of -6 Ry that separated the

valence electrons from the core electrons. There are 10 × 10 × 10 K-points in the

Brillouin zone that we used for energy calculations, which is 1000 K-points in the

total zone. Since denser mesh of K-points is required to calculate density of states

and transport properties, therefore we used 5000 K-points in the entire Brillouin

zone, or 17× 17× 17 in the irreducible Brillouin zone.

3.2 Geometric structure and volume optimization

The stability of any compound in the structure must first be checked before the elec-

tronic or magnetic properties calculations. We run volume optimization calculation

for both GGA and mBJ potential to obtain the best theoretical lattice parameters

and minimum energy value [30] which are the closest to experimental value. We

run this calculation for both ferromagnetic and non-magnetic phase [Figure 3.2].

The equilibrium energy of RS type structure is lower than that of ZB type, also

the same thing happen for lattice constant parameter (Table 3.1). For this purpose

we use the Murnaghan equation of state [31]. From the volume vs energy plotting
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Figure 3.2: Volume optimization of CeP in (a) rock salt and (b) zinc-blende type struc-

ture.

we can get the most stable structure of CeP and based on this structure the future

electronic and magnetic property is calculated. The unit cell of CeP shows in Figure

3.1 obtained by using XCrysDen software. The RMT value for both atom is 2.3 and

space group of RS type structure is Fm-3m (#225) with Ce atom at (0,0,0) position

and P atom at (0.5,0.5,0.5) position. In the ZB type structure the space group is

F-43m (#216). Here the position of Ce atom occupies at the same (0,0,0) site, but

the P atom located at (0.25,0.25,0.25) site. These value of space group and atomic

position of CeP compound are taken from reference [32].
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Table 3.1: Equilibrium energy and lattice constant of CeP in ferromagnetic and non-

magnetic phases.

Compound Structure type Calculation Lattice constant (Å) Equilibrium energy (Ry)

CeP

RS
NM 5.79 -18415.17

FM 5.41 -18415.17

ZB
NM 6.45 -18415.06

FM 6.49 -18415.08

3.3 Electronic properties

The density of state (DOS) and the electronic band structure are well-known pa-

rameters for determining the electronic properties. To compute the DOS and band

structure, we used the mBJ potential for both spin polarized and non-spin polarized

calculations.

3.3.1 Band structure
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Figure 3.3: Band structure of CeP zinc-blende type structure in spin up (a) and down

(b) channel.

In the field of electronic characteristics, the electronic band structure and density of
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state (DOS) are well-known parameters that we calculate for our compound CeP.

Figure 3.3 and Figure 3.4 illustrates the calculated spin up and down energy bands

both for ZB and RS type structure respectively. While Figure 3.5 represent the

non-magnetic calculation for both structure. The calculation is done by defining

highly symmetric points on the edge of the Brillouin zone with sampling path of

Γ−X −W − Γ− L−W . Since the energy values (E) are shown in relation to the

Fermi energy (EF ), so the fermi level is represented by 0 eV.
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Figure 3.4: Band structure of CeP rock salt type structure in spin up (a) and down (b)

channel.

The conduction and valence band intersect at Fermi level are shown in Figure

3.4(a,b) and 3.5(b) indicating CeP has metallic characteristics for RS type struc-

ture, also the same things happen for non-spin ZB type structure [Figure 3.5(a)].

While the band gap for both spin up and down bands can be readily seen in Figure

3.3(a,b) which indicates the semiconducting behavior of CeP for ZB type structure.

The lowest valence band in the up spin channel is for p band of the P atom, which

has an energy of -2.2 eV at the Γ point. The highest valence band at W point is the

f band of the Ce atom, which is in contact with Fermi level EF . Above the Fermi
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Figure 3.5: Band structure of CeP (a) zinc-blende and (b) rock salt type structure for

non-magnetic calculation.

energy level EF , the lowest conduction band is the f band at the L point, which

creates an indirect band gap of 0.689 eV between a maximum valence band at the

W point and a minimum conduction band at the L point. Also in case of down spin

channel maximum valence band occurs at the W point but minimum conduction

band at the L point which provides the comparable larger value of indirect gap of

1.951 eV. The calculated energy band gap (in eV) of CeP in both GGA and mBJ

approaches is tabulated in Table 3.2.

3.3.2 Density of state

The number of states for each period of energy which are occupied by the specific

energy levels is usually explained by the density of states (DOS) of the system.

The total and partial DOS are calculated within the magnetic phase designed for

spin up and down channel are also measured by utilizing the mBJ potential to find

electronic characteristics of CeP clearly, as shown in Figure 3.6 and Figure 3.7. The

total number of states per unit energy range (in eV) is plotted on the Y-axis, and

the corresponding energy (in eV) is plotted on the X-axis, both with reference to
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the Fermi energy. The Fermi energy was set to 0 eV in this case. We can see that

there is a band gap between the valence and conduction bands for both up and down

channel in ZB type structure. This value is 0.7 eV for up spin and 2.0 eV for down

spin. Which gives ZB type structure of CeP shows the semiconducting behaviour for

it ferromagnetic calculation. The orbital contribution of this satructure shows that

f state of Ce atom gives an majority contribution in the conduction band of both

up and down spin channel. For down spin channel a strong peak is obtain at 1.6

eV energy value. Whereas in the up spin channel we get three small peak between

1.4 eV to 2 eV energy value. In comparison with f state, d state gives negligible

contribution in both valence and conduction band. The orbital contribution of P

atom shows that the p states gives a very small contribution in the energy range from

-0.4 eV to -2.7 eV. Whereas the d state of this atom gives negligible contribution. The

RS type structure of CeP shows that there is no gap between conduction and valence

band, indicating the metallic behavior of this structure. The orbital contribution

for this structure shows almost same behavior as ZB type structure. Here f state

of Ce atom gives the majority contribution in the conduction band. In the valence

band p state of P atom gives very small contribution from -1.6 eV to -4 eV energy

range.
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Figure 3.6: The spin-polarized total densities of states (DOS) and partial DOSs of CeP

in zinc-blende type structure calculated at equilibrium lattice constant.
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Figure 3.7: The spin-polarized total densities of states (DOS) and partial DOSs of CeP

in rock salt type structure calculated at equilibrium lattice constant.

Table 3.2: Energy band gap (in eV) of CeP with GGA and mBJ approaches.

Compound Structure type Method
Band gap (eV)

Spin up Spin down

CeP ZB
GGA 0.078 1.663

mBJ 0.689 1.951

3.4 Magnetic properties

The ferromagnetic ordering in CeP is revealed by the spin-polarized calculation.

Furthermore, estimated magnetic moments of individual atoms (Table 3.3) helps

to understood the electronic property results. Ce atoms are responsible for the

majority of the total magnetic moment. For both mBJ and GGA potential, the

ZB type structure of CeP compound has an integer-value total magnetic moment

of 1.00 µB, which follows the Slater-pauling rule of Mt = Zt − 8 [33]. In case of RS

type structure we get a non-integer value of 0.67 µB for GGA potential and 0.88

µB for mBJ potential. The partial magnetic moments of Ce and P are antiparallel,

indicating that CeP carry ferromagnetic characteristics.

3.5 Optical property

Optical properties help us to understood the nature of materials and provide us a

clear image of how we might use them in optoelectronic devices. Within the mBJ

approximation, dielectric function, optical reflectivity, conductively, refractive index,
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Table 3.3: Total spin magnetic moment of CeP in GGA and mBJ approaches.

Compound Structure type Individual magnetic moment (µB)

CeP

ZB

Site GGA mBJ

Intersititial 0.15 0.1

Ce 0.88 0.91

P -0.03 -0.02

Total 1 1

RS

Intersititial 0.14 0.09

Ce 0.56 0.79

P -0.03 -0.01

Total 0.66 0.88

absorption coefficient, and electron energy loss of CeP are determined. Calculation

of the complex dielectric function as illustrated in Figure 3.8 is one of the best

techniques to investigating the optical properties of materials [34]. Which can be

represented as, ε(ω) = ε1(ω) + iε2(ω), where ε1(ω) and ε2(ω) are the real and

imaginary components of dielectric function respectively. There is no transition

of RS type structure and non-magnetic phase of ZB type structure because it has

a negative value and the incident electromagnetic waves are totally reflected. In

case of magnetic phase the ZB type structure shows positive value, indicating that

it is related to the EM wave propagation. The static values of ε1(0) in the ZB

type magnetic phase is 25.5 and also when the energy is increases, the value of real

dielectric function ε1(ω) approaches to zero. The maximum value of RS type FM

phase, RS type NM phase, ZB type FM phase and ZB type NM phase were 10.3, 15.3,

10.6 and 10.2 respectively. The energy absorption by the materials is represented

by the imaginary part of the dielectric function ε2(ω), which is also linked to the

energy band structure. Strong optical transitions are caused by the greatest peak

of the imaginary component of the dielectric constant, which is positioned between

0 and 0.5 eV energy range for both structures.

Reflectivity is utilized to determine whether a substance may be employed as an

anti-reflecting coating for shielding purpose, shown in Figure 3.9(a). According to

the EM spectrum the energy of the IR ray is 0.12 eV, in this area of energy we have
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Figure 3.8: Calculated (a) Real ε1(ω) and (b) Imaginary ε2(ω) part of dielectric function

of CeP as a function of energy.

a high value of reflectivity. The visible region spans the energy range of 1.8 eV to

3.1 eV and there is no highest peak value in this range, has a medium reflectivity

value. In the vacuum UV zone, the reflectivity increases and reaches to it maximum

value. For the ZB type structure, the greatest peak is 12 eV, while for the RS type

structure, it is 8.8 eV. As a result, in the high-energy vacuum UV region, CeP is

a good reflector. The ability of a medium to generate a conduction phenomenon

as electromagnetic radiation attempts to propagate through it is determined by

optical conductivity. In Figure 3.9(b), we can see the optical conductivity graph.

It is observe that as energy increases, the conductivity increases as well. For the

RS type NM phase, the greatest conductivity peak is found in the 6.5 eV energy

range. Optical conductivity begins to decrease at 6.5 eV and eventually disappears

for higher energy values. Which suggests that CeP could be a good material for

optoelectronics. The refractive index of CeP as shown in Figure 3.9(c), is another

important physical quantity that describes the optical properties of that compound.

The refractive index of material is increases with decreasing the speed of light as it

travels from one medium to another. The refractive indices are also known to be

inversely related to the band gap, with the band gap decreasing as the refractive

index rises. The largest refractive index value is found in the infrared region and

decreases with increasing energy at the visible and other region, as shown in this

graph. It is the most basic optical parameter for calculating how much energy a

material absorbs. We can see in Figure 3.9(d), the absorption coefficient has no

sharp peak in the IR and visible energy ranges, implies that CeP can conduct both

visible and IR rays. The highest value of absorption peaks are obtained with higher

32



Electronic, magnetic and optical properties of CeP

energies. All of this behavior can help the materials optoelectronic qualities. As

shown in Figure 3.9(e), the electron energy loss is an important factor in describing

the energy loss of a fast moving electron in a material. It is common knowledge that

the main peak in electron energy loss spectra exhibits the characteristic associated

with plasma resonance and its frequency ωp. The opaqueness of the compounds is

evidenced by the high peak in electron energy loss just after 4 eV.
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Figure 3.9: Calculated optical (a) reflectivity, (b) conductivity, (c) refractive index, (d)

absorption coefficient, and (e) electron energy loss of CeP as a function of energy.
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Chapter 4

Conclusions

We used first-principle calculations to investigate the electronic, magnetic, and opti-

cal properties of CeP, a rare-earth phosphide. The intriguing property of CeP being

more stable in the ferromagnetic phase for both ZB and RS type structures with

lattice parameters 5.41 and 6.49 Å respectively is obtained via volume optimization.

We find an indirect band gap of 0.689 and 1.951 eV in spin up and down channel

respectively for ZB type magnetic phase within mBJ potentials. The electronic band

structure and DOS calculations reveal the semiconducting behavior of CeP for it ZB

type structure. This type structure has an integer-valued total magnetic moment

of µB, corresponding to the Slater-Pauling rule, where Ce atom gives the major-

ity contribution. In case of optical property the optical reflectivity, conductivity,

refractive index, absorption coefficient, and electron energy loss at photon energies

up to 14.0 eV is used to investigate the optical nature of CeP. Our computed elec-

tronic, magnetic, and optical properties demonstrate that CeP is a good choice for

optoelectronic applications.
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List of Abbreviations

BZ : Brillouin Zone

DFT : Density Functional Theory

DOS : Density of States

XC : Exchange correlation

FM : Ferromagnetic

FP-LAPW : Full potential linearized augmented plane waves

GGA : Generalized Gradient Approximation

HK : Hohenberg-Kohn

HEG : Homogeneous electron gas

KS : Kohn-Sham

LSDA : Local Spin Density Approximation

NM : Non-magnetic

RS : Rock salt

ZB : Zinc-blende

35



Bibliography

[1] Daniel Steigerwald, Serge Rudaz, Heng Liu, R Scott Kern, Werner Götz, and
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