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Abstract

In this work, half-Heusler ZrCrPb alloy was studied utilizing the Full Potential Lin-

ear Augmented Plane Wave (FP-LAPW) method as implemented in the WIEN2k

code in the context of Density Functional Theory (DFT). The goal of this research

was to investigate the electronic, magnetic and optical properties of the half-Heusler

alloy. For our study, we employ the Perdew-Burke-Ernzerhof (PBE) exchange-

correlation potential for solving Kohn-Sham equation. The electronic band struc-

tures show that there is a band gap of 1.098 eV in up spin state and no band gap

in down spin state of the computed alloy, which demonstrates the half metallic na-

ture of the alloy ZrCrPb. The total magnetic moment is found to be around 4 µB,

indicating that the alloy is ferromagnetic. The alloy’s overall electrical and optical

characteristics support its use in electromagnetic applications.
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Chapter 1

Introduction

In the last three decades, the search for new materials in the field of spintronics

has led to Heusler alloys, which have proven to be excellent candidates for spin-

based electronic devices. Spintronics is a branch of science concerned with the use

of spin-directed materials in nano-scale devices such as spin-polarized light-emitting

diodes [1–3], spin-polarized field-effect transistors [4–6], magnetic random access

memories (MRAM) [7–9] and magnetic sensors etc [10, 11]. However, the pro-

duction of these devices at ambient temperature is frequently challenging. This is

because, at ambient temperature, the metals used to produce these devices lost their

half metallicity resulting in relatively large magnetic moments. Furthermore, half-

metallic materials with a large magnetic moment are not appropriate for practical

spintronic applications. The most commonly employed materials in this sector are

ferromagnets, ferrimagnets and anti-ferromagnets [12, 13]. Half metallic ferromag-

nets are a sort of novel materials with unique properties that are one of the most

important components in spintronics [14]. Half-metallic (HM) materials, in which

one of the two spin bands is semiconducting with a gap at the Fermi level but the

other is metallic, resulting in 100% spin polarization at the Fermi level, are gaining

in popularity due to their potential applications in spintronic devices. Heusler alloys

show the properties required for spintronic application which was developed in 1903
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Introduction

by a German mining engineer and chemist Friedrich Heusler [15,16], have been ac-

tively investigated in the scientific community both experimentally and theoretically

for a long time. Heusler alloys can be synthesized with XYZ, X2YZ, and XX′YZ

chemical formulations as half-Heusler [17–20], full Heusler [21–23], and quaternary

Heusler [24–28] alloys, respectively. Numerous investigations on these materials

have already been undertaken, and many of them have gone on to become half-

metallic ferromagnets. Interest in half-metal alloys has grown significantly since de

Groot et al., discovered half-metallic features of NiMnSb and PtMnSb half-Heusler

alloys [29]. The investigation of structural, electronic and magnetic properties of

YCrSb and YMnSb was done by M. Atif Sattar [30]. The thermoelectric proper-

ties of LiZnSb and LiZnN were investigated by Manaj K. Yadav [31] and so many

others. In the world of semiconductors, surface reconstruction has been a hot topic

of study. It is also crucial for physics fundamental aspects. The findings of this

research could be useful in determining the uses of half-Heusler alloys in the field of

spintronics. In this article, we represent our theoretical investigation of electronic,

magnetic, and optical properties of half-Heusler ZrCrPb alloy. The band structures,

total and partial density of states, real and imaginary dielectric functions, absorp-

tivity, conductivity, reflectivity and refractive index of calculated half-Heusler alloy

are presented in this article.
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Chapter 2

Background theory

2.1 Schrödinger equation

Schrödinger equation refers to a fundamental equation of quantum physics. The

Schrödinger equation is a linear partial differential equation that governs the wave

function of a quantum-mechanical system [32]. It is a key result in quantum me-

chanics, and its discovery was a significant landmark in the development of the

subject. The equation is named after Erwin Schrödinger, who postulated the equa-

tion in 1925, and published it in 1926, forming the basis for the work that resulted

in his Nobel Prize in physics in 1933 [33, 34]. The time-independent Schrödinger

equation

ĤΨ(~r) = ÊΨ(~r) (2.1)

Where, Ĥ is the hamiltonian operator and Ψ is the wave function. It is often

impracticable to use a complete relativistic formulation of the formula; therefore

Schrödinger himself postulated a non-relativistic approximation which is nowadays

often used, especially in quantum chemistry. Using the Hamiltonian for a single

particle

Ĥ = T̂ + V̂ = − ~2

2m
~∇2 + V (~r) (2.2)
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leads to the (non-relativistic) time-independent single-particle Schrödinger equation

ÊΨ(~r) =

[
− ~2

2m
~∇2 + V (~r)

]
Ψ(~r). (2.3)

For N particles in three dimensions, the Hamiltonian is

Ĥ =
N∑
i=1

p̂2
i

2mi

+ V (~r1, ~r2, ...~rN) = −~2

2

N∑
i=1

1

mi

+ V (~r1, ~r2, ....~rN) (2.4)

The corresponding Schrödinger equation reads

ÊΨ(~r1, ~r2, ...~rN) =

[
− ~2

2

N∑
i=1

1

mi

∇2
i + V (~r1, ~r2, ...~rN)

]
Ψ(~r1, ~r2, ...~rN) (2.5)

Special cases are the solutions of the time-independent Schrödinger equation, where

the Hamiltonian itself has no time-dependency (which implies a time-independent

potential V (~r1, ~r2, ..., ~rN) and the solutions therefore describe standing waves which

are called stationary states or orbitals). The time-independent Schrödinger equation

is not only easier to treat, but the knowledge of its solutions also provides crucial

insight to handle the corresponding time-dependent equation. The time-independent

equation is obtained by the approach of separation of variables, i.e. the spatial part

of the wave function is separated from the temporal part via [35]

Ψ(~r1, ~r2, ..., ~rN , t) = ψ(~r1, ~r2, ..., ~rN)τ(t) = ψ(~r1, ~r2, ..., ~rN)e
iEt
~ (2.6)

Furthermore, the l.h.s. of the equation reduces to the energy eigenvalue of the Hamil-

tonian multiplied by the wave function, leading to the general eigenvalue equation

Eψ(~r1, ~r2, ...~rN) = Ĥψ(~r1, ~r2, ...~rN) (2.7)

Again, using the many-body Hamiltonian, the Schrödinger equation becomes

Eψ(~r1, ~r2, ..., ~rN) =

[
− ~2

2

N∑
i=1

1

mi

∇2
i + V (~r1, ~r2, ..., ~rN)

]
ψ(~r1, ~r2, ..., ~rN) (2.8)
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2.1.1 The wave function

Wave function ψ is a quantity associated with a moving particle. It is a complex

quantity. The wave function ψ has no direct physical meaning. The wave function

ψ(r, t) describes the position of a particle with respect to time. It can be considered

as probability amplitude. |ψ|2 is proportional to the probability of finding a particle

at a particular time. It is the probability density.

|ψ|2 = |ψ∗ψ|2 (2.9)

The wave function ψ must be finite everywhere. If ψ is finite for a particular point, it

means an infinite large probability of finding the particles at that point. This would

violates the uncertainty principle. It must be single valued. If ψ has more than one

value at any point, it means more than one value of probability of finding the particle

at that point which is obviously ridiculous. The wave function must be continuous

and have a continuous first derivative everywhere and its must be normalizable.

For the sake of simplicity the discussion is restricted to the time-independent wave

function. A question always arising with physical quantities is about possible inter-

pretations as well as observations. The Born probability interpretation of the wave

function, which is a major principle of the Copenhagen interpretation of quantum

mechanics, provides a physical interpretation for the square of the wave function as

a probability density [36,37]

P = |ψ(~r1, ~r2, ..., ~rN |2d~r1d~r2....d~rN (2.10)

Equation (2.10) describes the probability that particles 1,2,...,N are located simul-

taneously in the corresponding volume element d~r1 d~r2...d~rN [38]. What happens if

the positions of two particles are exchanged, must be considered as well. Following

merely logical reasoning, the overall probability density cannot depend on such an

exchange, i.e.

|ψ(~r1, ~r2, ..., ~ri, ~rj, ..., ~rN)|2 = |ψ(~r1, ~r2, ..., ~rj, ~ri, ..., ~rN)|2 (2.11)

5
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There are only two possibilities for the behavior of the wave function during a

particle exchange. The first one is a symmetrical wave function, which does not

change due to such an exchange. This corresponds to bosons (particles with integer

or zero spin). The other possibility is an anti-symmetrical wave function, where

an exchange of two particles causes a sign change, which corresponds to fermions

(particles which half-integer spin) [39, 40]. In this text only electrons are from

interest, which are fermions. The anti symmetric fermion wave function leads to

the Pauli principle, which states that no two electrons can occupy the same state,

whereas state means the orbital and spin parts of the wave function [41] (the term

spin coordinates will be discussed later in more detail). The antisymmetry principle

can be seen as the quantum-mechanical formalization of Pauli’s theoretical ideas

in the description of spectra (e.g. alkaline doublets) [42]. Another consequence of

the probability interpretation is the normalization of the wave function. If equation

(2.10) describes the probability of finding a particle in a volume element, setting the

full range of coordinates as volume element must result in a probability of one, i.e. all

particles must be found somewhere in space. This corresponds to the normalization

condition for the wave function.

∫
d~r1

∫
d~r2...

∫
d~rN |ψ(~r1, ~r2, ..., ~rN)|2 = 1 (2.12)

Equation (2.12) also gives insight on the requirements a wave function must fulfill

in order to be physical acceptable. Wave functions must be continuous over the full

spatial range and square-integratable [43]. Calculating the expectation values of

operators with a wave function also provides the expectation value of the relevant

observable for that wave function [44]. For an observable O(~r1, ~r2, ..., ~rN), this can

generally be written as

O = 〈O〉 =

∫
d~r1

∫
d~r2...

∫
d~rNψ

∗(~r1, ~r,..., ~rN)Ôψ(~r1, ~r2, ..., ~rN) (2.13)
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2.2 Born-Oppenheimer (BO) approximation

The Hamiltonian of a many-body system consisting of nuclei and electrons can be

written as:

Htot = −
∑
I

~2

2MI

∇2
~RI
−
∑
i

~2

2me

∇2
~ri

+
1

2

∑
I,J
I 6=J

ZIZJe
2

|~RI − ~RJ |
+

1

2

∑
i,j
i 6=j

e2

|~ri − ~rj|
−
∑
I,i

ZIe
2

|~RI − ~ri|

(2.14)

Where the indexes I, J run on nuclei, i and j on electrons, ~RI and MI are positions

and masses of the nuclei, ~ri and me of the electrons, ZI the atomic number of nucleus

I. The first term is the kinetic energy of the nuclei, the second term is the kinetic

energy of the electrons, the third term is the potential energy of nucleus-nucleus

Coulomb interaction, the fourth term is the potential energy of electron-electron

Coulomb interaction and the last term is the potential energy of nucleus-electron

Coulomb interaction. The time-independent Schrödinger equation for the system is,

HtotΨ({~RI}, {~ri}) = EΨ({~RI}, {~ri}) (2.15)

Where Ψ({~RI}, {~ri}) is the total wave function of the system. By solving the above

Schrödinger equation we get wave function, which can provide everything about the

system. It is quietly impossible to solve it in practice and approximation is needed.

A so-called Born-Oppenheimer approximation was made by Born and Oppenheimer

in 1927. Since the nuclei are much heavier than electrons, the nuclei move much

slower than the electrons. Therefore we can separate the movement of nuclei and

electrons. So, the electronic wave function depends upon only the nuclear position

but does not depend upon their velocities. The total wave function can be written

as

Ψ({~RI}, {~ri}) = Θ({~RI})φ({~ri}; {~RI}) (2.16)

Where Θ({~RI}) describe the nuclei and φ({~ri}; {~RI}) the electrons. So, we can

write the Schrödinger equation into two separate equation.

Heφ({~ri}; {~RI}) = V ({~RI})φ({~ri}; {~RI}) (2.17)

7
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Where,

He = −
∑
i

~2

2me

∇2
~ri

+
1

2

∑
I,J
I 6=J

ZIZJe
2

|~RI − ~RJ |
+

1

2

∑
i,j
i 6=j

e2

|~ri − ~rj|
−
∑
I,i

ZIe
2

|~RI − ~ri|
(2.18)

and [
−
∑
I

~2

2MI

∇2
~RI

+ V ({~RI})
]
Θ({~RI}) = E ′Θ({~Ri}) (2.19)

Equation (2.17) is the equation for the electronic problem with the nuclei positions

fixed. The significance of the BO approximation is to separate the movement of

electrons and nuclei.

2.3 The Hartree-Fock approach

In order to find a suitable strategy to approximate the analytically not accessible

solutions of many-body problems, a very useful tool is variational calculus, similar

to the least-action principle of classical mechanics. By the use of variational calcu-

lus, the ground state wave function ψ0, which corresponds to the lowest energy of

the system E0, can be approached. A useful literature source for the principles of

variational calculus has been provided by T. Flieÿbach [45]. Hence, for now only the

electronic Schrödinger equation is of interest, therefore in the following sections we

set Ĥ ≡ Ĥel, E ≡ Eel, and so on. Observables in quantum mechanics are calculated

as the expectation values of operator. The energy as observable corresponds to the

Hamilton operator, therefore the energy corresponding to a general Hamiltonian can

be calculated as

E = 〈Ĥ〉 =

∫
d~r1

∫
d~r2...

∫
d~rNψ ∗ (~r1, ~r2, ..., ~rN)Ĥψ(~r1, ~r2, ..., ~rN) (2.20)

The Hatree-Fock techique is based on the principle that the energy obtained by any

(normalized) trial wave function other than the actual ground state wave function

is always an upper bound, i.e. higher than the actual ground state energy. If the

trial function happens to be the desired ground state wave function, the energies

8
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are equal to

Etrial ≥ E0 (2.21)

with

Etrial =

∫
d~r1

∫
d~r2...

∫
d~rNψ

∗
trial(~r1, ~r2, ..., ~rN)Ĥψtrial(~r1, ~r2, ..., ~rN) (2.22)

and

E0 =

∫
d~r1

∫
d~r2...

∫
d~rNψ

∗
0(~r1, ~r2, ..., ~rN)Ĥψ0(~r1, ~r2, ..., ~rN) (2.23)

The expressions above are usually inconvenient to handle. For the sake of a compact

notation, in the following the bra-ket notation of Dirac is introduced. For a detailed

description of this notation, the reader is referred to the original publication [46].

In that notation, equation (2.21) to (2.23) are expressed as

〈ψtrial|Ĥ|ψtrial〉 = Etrial ≥ E0 = 〈ψ0|Ĥ|ψ0〉 (2.24)

Proof: The eigenfunctions ψi of the Hamiltonian Ĥ (each corresponding to an energy

eigenvalue Ei form a complete basis set, therefore any normalized trial wave function

ψtrial can be expressed as linear combination of those eigenfunctions.

ψtrial =
∑
i

λiψi (2.25)

The assumption is made that the eigenfunctions are orthogonal and normalized.

Hence it is requested that the trial wave function is normalized, it follows that

〈ψtrial|ψtrial〉 = 1 = 〈
∑
i

λiψi|
∑
j

λjψj〉 =
∑
i

∑
j

λ∗iλj〈ψi|ψj〉 =
∑
j

|λj|2 (2.26)

On the other hand, following (2.24) and (2.26)

Etrial = 〈ψtrial|Ĥ|ψtrial〉 = 〈
∑
i

λiψi|Ĥ|
∑
j

λjψj〉 =
∑
j

Ej|λj|2 (2.27)

9
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Together with the fact that the ground state energy E0 is per definition the lowest

possible energy, and therefore has the smallest eigenvalue (E0 ≤ Ei), it is found that

Etrial =
∑
j

Ej|λj|2 ≥ E0

∑
j

|λj|2 (2.28)

what resembles equation (2.24). The mathematical framework used above, i.e. rules

which assign numerical values to functions, so called functionals, is also one of the

main concepts in density functional theory. A function gets a numerical input and

generates a numerical output whereas a functional gets a function as input and

generates a numerical output [47]. Equations (2.20) to (2.28) also include that a

search for the minimal energy value while applied on all allowed N electron wave-

functions will always provide the ground-state wave function (or wave functions,

in case of a degenerate ground state where more than one wave function provides

the minimum energy). Expressed in terms of functional calculus,where ψ → N

addresses all allowed N-electron wave functions, this means

E0 = min
ψ→N

E[ψ] = min
ψ→N
〈ψ|Ĥ|ψ〉 = min

ψ→N
〈ψ|T̂ + V̂ + Û |ψ〉 (2.29)

Due to the vast number of alternative wave functions on the one hand and pro-

cessing power and time constraints on the other, this search is essentially unfeasible

for N electron systems. Restriction of the search to a smaller subset of potential

wave functions, as in the Hartree-Fock approximation, is conceivable. A slater de-

terminant is a formula in quantum mechanics that desceibes the wave function of

a multi-fermionic system. It satisfies anti-symmetric criteria, and thus the Pauli’s

principle, by changing sign when two electrons are exchanged (or other fermions).

Only a small fraction of all potential fermionic wave functions can be expressed as

a single slater determinant, but because of their simplicity, they are an important

and useful subset. In the Hartree- Fock approach, the search is restricted to ap-

proximations of the N-electron wave function by an antisymmetric product of N

(normalized) one electron wave functons, the so called spin- orbitals χi(~xi). A wave

10
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function of this type is called Slater-determinant, and reads

Ψ0 ≈ φSD = (N !)−
1
2

∣∣∣∣∣∣∣∣∣∣∣∣

χ1(~x1) χ2(~x1) · · · χN(~x1)

χ1(~x2) χ2(~x2) · · · χN(~x2)
...

...
. . .

...

χ1(~xN) χ2(~xN) · · · χN(~xN)

∣∣∣∣∣∣∣∣∣∣∣∣
(2.30)

It is important to notice that the spin-orbitals χi(~xi) are not only depending on

spatial coordinates but also on a spin coordinate which is introduced by a spin

function, ~xi = ~ri, s. Returning to the variational principle and equation (2.29), the

ground state energy approximated by a single slater determinant becomes

E0 = min
φSD→N

E[φSD] = min
φSD→N

〈φSD|Ĥ|φSD〉 = min
φSD→N

〈φSD|T̂ + V̂ + Û |φSD〉 (2.31)

A general expression for the Hartree-Fock Energy is obtained by usage of the Slater

determinant as a trial function

EHF = 〈φSD|Ĥ|φSD〉 = 〈φSD|T̂ + V̂ + Û |φSD〉 (2.32)

For the sake of brevity, a detailed derivation of the final expression for the Hartree-

Fock energy is omitted. It is a straightforward calculation found for example in the

Book by Schwabl. The final expression for the Hartree-Fock energy contains three

major parts:

EHF = 〈φSD|Ĥ|φSD〉 =
N∑
i

(i|ĥ|i) +
1

2

N∑
i

N∑
j

[(ii|jj)− (ij|ji)] (2.33)

with

(i|ĥi|i) =

∫
χ∗i (~xi)[−

1

2
~∇2
i −

M∑
k=1

Zk
rik

]χi(~xi)d~xi, (2.34)

(ii|jj) =

∫∫
|χi(~xi)|2

1

rij
|χj(~xj)|2d~xid~xj, (2.35)

(ii|jj) =

∫∫
χi(~xi)χ

∗
j(~xj)

1

rij
χj(~xj)χ

∗
i (~xi)d~xid~xj (2.36)

11
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The first term corresponds to the kinetic energy and the nucleus-electron inter-

actions, ĥ denoting the single particle contribution of the Hamiltonian, whereas

the latter two terms correspond to electron-electron interactions. They are called

Coulomb and exchange integral, respectively. Examination of equations (2.33) to

(2.36) furthermore reveals, that the Hartree-Fock energy can be expressed as a func-

tional of the spin orbitals EHF = E[{χi}]. Thus, variation of the spin orbitals leads

to the minimum energy. An important point is that the spin orbitals remain or-

thonormal during minimization.This restriction is accomplished by the introduction

of Lagrangian multipliers λi in the resulting equations, which represent the Hartree-

Fock equations. Finally one arrives at

f̂χi = λiχi i = 1, 2, ..., N (2.37)

with

f̂i = −1

2
~∇2
i −

M∑
k=1

Zk
rik

+
N∑
i

[Ĵj(~xi)− K̂j(~xi)] = ĥi + V̂ HF (i) (2.38)

the Fock operator for the i-th electron. In similarity to (2.33) to (2.36), the first

twonterms represent the kinetic and potential energy due to nucleus-electron inter-

action, collected in the core Hamiltonian ĥi, whereas the latter terms are sums over

the Coulomb operators Ĵj and the exchange operators K̂j with the other j elec-

trons, which form the Hartree-Fock potential V̂ HF . There are major approximation

of Hartree-Fock can be seen. The two electron repulsion operator from the origi-

nal Hamiltonian is exchanged by a one-electron operator V̂ HF which describes the

repulsion in average.

2.3.1 Limitations and failings of the Hartree-Fock approach

Atoms as well as molecules can have an even or odd number of electrons. If the

number of electrons is even and all of them are located in double occupied spatial

orbitals φi, the compound is in a singlet state. Such systems are called closed-shell

systems. Compounds with an odd number of electrons as well as compounds with

single occupied orbitals, i.e. species with triplet or higher ground state, are called

open-shell systems respectively. These two types of systems correspond to two dif-
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ferent approaches of the Hartree-Fock method. In the restricted HF method (RHF),

all electrons are considered to be paired in orbitals whereas in the unrestricted

HF method (UHF) this limitation is lifted totally. It is also possible to describe

open-shell systems with a RHF approach where only the single occupied orbitals

are excluded which is then called a restricted open-shell HF (ROHF) which is an

approach closer to reality but also more complex and therefore less popular than

UHF. There are also closed-shell systems which require the unrestricted approach

in order to get proper results. For instance, the description of the dissociation of

H2 (i.e.) the behavior at large internuclear distance), where one electron must be

located at one hydrogen atom, can logically not be obtained by the use of a system

which places both electrons in the same spatial orbital. Therefore the choice of

method is always a very important point in HF calculations. Kohn states several

M = p5 with 3 ≤ p ≤ 10 parameters for an output with adequate accuracy in the

investigations of the H2 system [48]. For a system with N = 100 electrons, the

number of parameters rises to

M = p3N = 3300to10300 ≈ 10150to10300 (2.39)

According to the equation (2.39), energy reduction would have to be done in a space

with at least 10150 dimension, which is well above current computer capabilities. As

a result, HF methods are limited to situations involving a modest number of electron

(N ≈ 10), This barrier commonly referred to as the exponential wall because of the

exponential component in (2.39) [48]. Since a many electron wave function cannot

be described entirely by a single Slater determinant, the energy obtained by HF

calculations is always larger than the exact ground state energy. The most accurate

energy obtainable by HF methods is called the Hartree-Fock-limit. The difference

between EHF and Eexact is called correlation energy and can be denoted as [49]

EHF
corr = Emin − EHF (2.40)
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2.4 The electron density

A general statement concerning the computation of observablees has been presented

in section 2.1.1 about the wave function ψ. This section is about a quantity that is

computed in a similar manner. The electron density (for N electrons) as the basic

variable of density functional theory is defined as [38]

n(~x) = N
∑
s1

∫
d~x2...

∫
d~xNψ

∗(~x1, ~x2, ...., ~xN)ψ(~x1, ~x2, ..., ~xN). (2.41)

which is the basic variable of density function theory. If the spin coordinates are

neglected, the electron density can even be expressed as measurable observable only

dependent on spatial coordinates

n(~r) = N

∫
d~r2...

∫
d~rNψ

∗(~r1, ~r2, ..., ~rN)ψ(~r1, ~r2, ..., ~rN) (2.42)

The total number of electrons can be obtained by integration the electron density

over the spatial variables

N =

∫
d~rn(~r). (2.43)

2.5 Thomas-Fermi Model

The predecessor to DFT was the Thomas-Fermi (TF) model proposed by Thomas

amd Fermi in 1927. In this method, they used the electron density n(r) as the basic

variable instead of the wave function. The total energy of a system in an external

potential Vext(r) is written as a function of the electron density n(r) as:

ETF [n(r)] = A1

∫
n(r)

5
3dr +

∫
n(r)Vext(r)dr +

1

2

∫∫
n(r)n(r′)

|r− r′|
drdr′ (2.44)

where the first term is the kinetic energy of the non-interacting electron in a ho-

mogeneous electron gas (HEG) with A1 = 3
10

(3π2)
2
3 in the atomic units. The free
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electron energy state εk = k2

2
up to the fermi wave vector kF = [3π2n(r)]

1
3 as:

t0[n(r)] =
2

(2π)3

∫ kF

0

k2

2
4πk2dk = A1n(r)

5
3 (2.45)

In 1930, Dirac extended the Thomas-Fermi method by adding a local exchange term

A2

∫
n(r)

3
4dr to Equation (2.44) with A2 = −3

4
( 3
π
)
1
3 which leads Equation (2.44) to

ETFD[n(r)] = A1

∫
n(r)

5
3dr+

∫
n(r)Vext(r)dr+

1

2

∫∫
n(r)n(r′)

|r− r′|
drdr′+A2

∫
n(r)

4
3dr

(2.46)

By using the technique of Lagrange multipliers, the solution can be found in the

stationary condition:

δ{ETED[n(r)]− µ(

∫
n(r)dr−N)} = 0 (2.47)

where µ is a constant known as a Lagrange multiplier, whose physical meaning is

the chemical potential. Equation (2.47) leads to the Thomas-Fermi-Dirac equation,

5

3
A1n(r)

2
3 + Vext(r) +

∫
n(r′)

|r− r′|
dr′ +

4

3
A2n(r)

1
3 − µ = 0 (2.48)

This can be solved directly to obtain the ground state density.

2.6 The Hohenberg-Kohn (HK) theorems

DFT was proven to be an exact theory of many-body systems by Hohenberg and

Kohn [51] in 1964. It applies not only to condensed-matter systems of electrons

with fixed nuclei, but also more to any system of interacting particles in an external

potential Vext(~r). The theory is based upon two theorems.

2.6.1 HK theorem I

Statement: The ground state particle density n(r) of a system of interacting par-

ticles in an external potential Vext(r) uniquely determines the external potential

Vext(r), except for a constant. Thus the ground state particle density determines
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the full Hamiltonian, except for a constant shift of the energy. In principle, all the

states including ground and excited states of the many-body wavefunctions can be

calculated. This means that the ground state particle density uniquely determines

all properties of the system completely.

Proof: Here we only consider the case that the ground state of the system is

nondegenerate. It can be proven that the theorem is also valid for systems with

degenerate ground state [52]. Suppose there are two different external potentials

Vext(r) and V ′ext(r) whice differ by more than a constant and lead to the same

ground state density n0(r). The two external potentials would give two different

Hamiltonians, Ψ and Ψ′, with ĤΨ = E0Ψ and Ĥ ′Ψ′ = E ′0Ψ′. Since Ψ′ is not the

ground state of Ĥ, it follows that

E0 < 〈Ψ′|Ĥ|Ψ′〉

< 〈Ψ′|Ĥ ′|Ψ′〉+ 〈Ψ′|Ĥ − Ĥ ′|Ψ′〉 (2.49)

< E ′0 +
∫
n0(r)

[
Vext(r)− V ′ext(r)

]
dr

Similarly

E0
′ < 〈Ψ|Ĥ

′
|Ψ〉

< 〈Ψ|Ĥ|Ψ〉+ 〈Ψ|Ĥ ′ − Ĥ|Ψ〉 (2.50)

< E0 +
∫
n0(r)

[
V ′ext(r)− Vext(r)

]
dr

Adding Equations (2.49) and (2.50) lead to the contradiction

E0 + E ′0 < E0 + E ′0 (2.51)

Hence, no two different external potentials Vext(r) can give rise to the same ground

state density n0(r),i.e., the ground state density determines the external potential

Vext(r), except for a constant.That is to say, there is a one-to-one mapping between
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the ground state density n0(r) and the external potential Vext(r), although the exact

formula is known.

2.6.2 HK theorem II

Statement: The ground state energy can be derived from the electron density by

the use of variational calculus. The electron density, which provides a minimum of

the ground state energy, is therefore the exact ground state density. Since the wave

function is a unique functional of the electron density, every trial wave function

Ψ′ corresponds to a trial density n′(~r) following equation(2.41). According to the

Rayleigh-Ritz principle, the ground state energy is obtained as

Ev,0 = min
Ψ′
〈Ψ′|Ĥ|Ψ′〉 (2.52)

Proof: In principle, the minimization can be carried out in two steps. In the first

step, a trial electron density n′(~r) is fixed. The class of trial functions corresponding

to that electron density is then denoted by Ψ′αn′ . Then, the constrained energy

minimum is defined as

[Ev[n
′(~r)]] ≡ min

α
〈Ψ′αn′|Ĥ|Ψ′αn′〉 =

∫
v(~r)n′(~r)d~r + F [n′(~r)]. (2.53)

In that notation, F [n′(~r)] is the universal functional

F [n′(~r)] ≡ min
α
〈Ψ′αn′ |T̂ + Û |Ψ′αn′〉 (2.54)

Equation (2.55) is minimized over all trial densities n′(~r):

Ev,0 = min
n′(~r)

Ev[n
′(~r)] = min

n′(~r)
{
∫
v(~r)n′(~r)d~r + F [n′(~r)]} (2.55)

Now, for a non-degenerate ground state, the energy in 2.57 is attained, if n′(~r) is

the actual ground state density. It has been shown that density functional theory

provides a clear and mathematical exact framework for the use of the electron density

as base variable. Nevertheless, nothing of what has been derived is of practical use.
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In other words, the Hohenberg-Kohn theorems, as important as they are, do not

provide any help for the calculation of molecular properties and also do not provide

any information about approximations for functional like F [n′(~r)]. This difficulties

was overcome by Kohn and Sham in 1965, who proposed the well known Kohn-Sham

equations.

2.7 Kohn-Sham equations

Kohn and Sham introduced an orbital approach for evaluating Fni[n] in 1965, which

was an important step toward quantitative modeling of electronic structure. In other

words, in order to evaluate the kinetic energy of N non interacting particles given

only their density distribution n(r), they simply found the corresponding potential,

called veff (r), and used the Schrödinger equation.

(− ~2

2M
∇2 + veff (r))ψi(r) = εiψi(r) (2.56)

Such that n(r) =
∑N

i=1 |ψ(r)|2 the states ψi here are ordered so that the energies

εi are non decreasing, and the spin index is included in i. If the εN is degenerate

with εN+1 (and also at finite temperatures), fractional occupations fi are to be used

n(r) =
∑∞

i=1 fi|ψ(r)|2, but if only spin degeneracy is involved, the result for the

density is not affected. The kinetic energy is then given by,Fni =
∑N

i=1 |〈ψi|t̂|ψi〉 =∑N
i=1 εi−

∫
d(r)n(r)veff (r) where t̂i is the kinetic energy operator for the ith electron

(T̂ =
∑

i t̂i). In practice, it is the external potential of a given system which is known,

not the density distribution or the effective potential. One may find the effective

potential by taking a functional derrivative of the three term expression for FHK [n],

and rearranging the terms:

veff (r) = v(r)− eϕ(r) +XC(r) (2.57)
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where we have used Equation (2.55) for both the interacting and non interacting

system. The electrostatic potential is here

ϕ(r) = −e
∫
dr′

n(r′)

|r− (r′)|
(2.58)

And the exchange-correlation potential is defined as

vXC(r) =
δEXC
δn(r)

(2.59)

Given a particular approximation for EXC(n), one obtains vXC(r) and can thus find

veff (r) from n(r) for a given v(r). The set of equations described above is called

the Kohn Sham equations of DFT [53–56].

2.7.1 Solving Kohn-Sham equations

Once we have approximated the exchange-correlation energy, we are in a position

to solve the Kohn-Sham equations. The Kohn-Sham equations have an iterative

solution; they have to be solved self-consistently. To solve the Kohn-Sham equa-

tions for a many body system, we need to define the Hartree potential and the

exchange-correlation potential, and to define the Hartree potential and the exchange-

correlation potential, we need to know the electron density n(r). However, to find

the electron density, we must know the single electron wave functions. We do not

know these wave functions until we solve the Kohn-Sham equations. The well-known

approach to solve the Kohn-Sham equations is to start with an initial trial electron

density as illustrated in Figure 2.1. Then solve these equations using trial electron

density. After solving the Kohn-Sham equations, we will have a set of single electron

wave functions. Using these wave functions, we can calculate the new electron den-

sity. The new electron density in an input for the next cycle. Finally, compare the

difference between the calculated electron densities for consecutive iterations. If the

difference in electron density between consecutive iteration is lower than an appro-

priately chosen convergence criterion, then the solution of the Kohn-Sham equations

is said to be self-consistent. Now the calculated electron density is considered as the

ground state electron density, and it can be used to calculate the total energy of the
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Figure 2.1: Flowchart of self-consistency loop for solving Kohn-Sham equations

system.

2.8 The Exchange-Correlation Functional

The major problem in solving the Kohn-Sham equations is that the true form of the

exchange-correlation functional is not known. Two main approximation methods

have been implemented to approximate the exchange-correlation functional. The

local density approximation (LDA) is first approach to approximate the exchange-

correlation functional in DFT calculations. The second well known class of ap-

proximations to the Kohn-Sham exchange-correlation functional is the generalized

gradient approximation (GGA). In the GGA approximation the exchange and cor-

relations energies include the local electron density and the local gradient in the

electron density [57].
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Chapter 3

Electronic, magnetic and optical

properties of ZrCrPb

3.1 Computational details

The full potential linear augmented plane wave (FP-LAPW) method [58], as imple-

mented in WIEN2k [59] code, was used to calculate the half-Heusler ZrCrPb alloy

inside density functional theory (DFT) [60]. In the Kohn-Sham (KS) equation [61],

we use the Perdew-Burke-Ernzerhof (PBE) [62] functional to determine exchange-

correlation (XC) potential. We use spin-polarized density functional theory in our

calculations to account for the role of spin in the geometry optimization of electronic

structure and magnetic behaviour. The energy convergence criteria was set to 10−5

Ry, while the charge convergence criteria was set to 10−4 e, where, e is an electron

charge. The value of RMTKmax was set to 8 for alloy to limit the number of plane

waves, where RMT is the Muffin-Tin Radius and Kmax is the maximum value selected

for the expansion of the complete plane wave vector. RMT values of Pb, Zr and Cr

were 2.5, 2.5 and 2.48 respectively. The usual tetrahedron technique [63] was used

to complete the Brillouin zone (BZ) integration.
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3.2 Structural optimization

In Wyckoff coordinates, the Heusler structure can be thought of as four inter-

penetrating face centered cubic (fcc) lattices with four unique crystal-sites. General

formula for a half-Heusler alloy XYZ, where X and Y are transitional metals and

Z is the main group element, has only one magnetic sublattice. Half-Heusler ma-

terials are related to classic semiconductors like Si and GaAs, and they crystallize

into the non-centrosymmetric cubic MgAgAs-C1b structure (space group F-43m,

No.216) with a 1:1:1 stoichiometry, which is arranged differently from CaF2 and

may originate from the tetrahedraL zinc blend (ZB)-type structure [64].

Figure 3.1: Crystallographic structure of half-Heusler alloy ZrCrPb.

The three inter-penetrating fcc lattices Wyckoff positions are 4a(0, 0, 0), 4b(1/2,

1/2, 1/2) and 4c(1/4, 1/4, 1/4) while 4d(3/4, 3/4, 3/4) site is unoccupied. In

essence, these Wyckoff locations 4a, 4b and 4c can be occupied by X, Y and Z atoms,

respectively. For an illustration, the crystal structure of ZrCrPb alloy for possible

atomic arrangements is shown in Figure 3.1. The lattice constant is calculated

using Murnaghan’s equation of state [65]. The most stable structure of ZrCrPb is

confirmed by optimizing the total energy as a function of volume for the states with

the lattice parameter 6.5643 Å as illustrated in Figure 3.2. The results after SCF

calculation are shown in Table 3.1.
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Figure 3.2: Calculated total energy of ZrCrPb alloy as a function of unit cell volume

Table 3.1: Calculated total energy (Ry) and fermi energy (eV).

Compound Exchange correla-
tion potential

Total energy (Ry) Fermi energy (eV)

ZrCrPb PBE-GGA -51157.43143 0.5196

3.3 Electronic properties

The electronic structures contain an essential part to identify the half-metallic prop-

erties associated with half-Heusler materials. Its crucial to compute the band struc-

tures and density of states (DOS) of a crystalline solid in order to understand its

electronic properties, which usually always explain the system’s transport and opti-

cal properties. With the PBE approximation, the estimated electronic band struc-

tures, total density of states (TDOS) and total contribution of ZrCrPb alloy are

displaced in Figure 3.3 within energy range -4 to 4 eV. The left panel exhibits the

spin-up (majority) state, and the right panel demonstrates the bands for the spin-

down (minority) state. The different colors in Figure 3.3 show different physical

meanings. They show the contributions of s, p and d orbitals of Zr, Cr and Pb

atoms to electronic band structures. Dashed lines are indicating fermi level (zero
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Figure 3.3: Electronic band structures of ZrCrPb a) up spin b) down spin and c) Total

Density of States (TDOS).

energy) and all the properties are calculated in the first Brillouin zone through the

high symmetry paths. For up spin, conduction band minimum is on the X point,

while the valnace band maximum is on the Γ point providing an indirect band gap

of 1.098 eV as shown in Figure 3.3(a). But there is no band gap for down spin

(Figure 3.3(b)), which illustrates the compound half-metallic nature. The number

of states filled by distinct energy levels for each period of energy is referred to as

the density of states (DOS). Figure 3.3(c) represents the total density of states of

ZrCrPb alloy. In the system, we see that the total contribution of Pb in the valance

band and conduction band is negligible. ZrCrPb has half-metallicity due to Zr and

Cr down spin. The partial density of states (PDOS) of a system represents how

holes and electrons arrange themselves within a solid and other optical characteris-
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Figure 3.4: Partial density of states (PDOS) of ZrCrPb a) Pb b) Zr and c) Cr atoms.

tics. The PDOS of ZrCrPb alloy is the representation of the hybridization of Zr-4d,

Cr-3d, and Pb-6p atoms where Pb-6p is dominated in valance band and Zr-4d and

Cr-3d dominated in conduction band. In down spin, metallicity appears due to the

hybridization of Zr-4d and Cr-3d atoms in the Fermi level. In comparison to Zr and

Cr atoms, the contribution of the Pb atom at Fermi level is minor. Zr and Cr d

orbitals contribute the majority of states near Ef for down spin, which is consistent

to other transition metal-based half-Heusler computations. The up spin state in the

alloy has a semiconducting property with an energy gap around Fermi level, but the

down spin state cross the Fermi level and exhibits metallic behaviour, indicating

that the examined material is half metallic with 100% spin polarization. Figure 3.4

represents the partial density of states (PDOS) of ZrCrPb.
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3.4 Magnetic properties

The unsymmetrical character of up and down spin charge density distribution and

density of states causes the magnetic properties of ZrCrPb alloy. As half-Heusler

materials have single magnetic sublattice on its octahedral sites, mainly Zr atom

occupies the octahedralsites in stable structure of ZrCrPb alloy. Magnetic moments

in pure metals fluctuate according to Hund’s rule, but when Heusler transition

metals form alloys, the d orbital electron availability changes due to the different

electro-negativity [30] of the transition metals in the periodic table.

Table 3.2: Magnetic moments in terms of Bohr magneton (µB) for Zr, Cr and Pb atoms

respectively and total magnetic moment of ZrCrPb alloy.

Compound MZr/µB MCr/µB MPb/µB Mint/µB Mtot/µB Magnet type
ZrCrPb 0.28447 3.24772 -0.01407 0.48233 4.00045 Ferromagnet

Table 3.2 shows the total and interestitial magnetic moments of ZrCrPb alloy in unit

of Bohr magneton (µB), as well as individual moments of Zr, Cr, and Pb respec-

tively. From total magnetic moments it can be seen that the alloy is ferromagnetic

in nature. This material can be used to make transformers, generators, electric mo-

tors, hard drives, hard disks, magnetic storage, magnetic tape recording, and other

electromagnetic devices.

3.5 Optical properties

In order to understand the optical properties of half-Heusler alloy, we have studied

the dielectric tensor (ε), absorption coefficient (A), conductivity, reflectivity (R),

and refractive index (η) of ZrCrPb alloy.

3.5.1 Dielectric function

There are two parts of dielectric function, which are imaginary dielectric function

and real dielectric function. The mathematical formula for dielectric function as
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Figure 3.5: Dielectric function a) real b) imaginary

given by Ehrenreich and Cohen’s is, [66]

ε(ω) = ε1(ω) + iε2(ω) (3.1)

where, ε1 and ε2 are the real and imaginary part of the dielectric function. Real

dielectric function (ε1(ω)) represents the degree of polarization of a material when

it placed into an electric field and imaginary dielectric function (ε2(ω)) represents

the energy dissipation aptitude of a dielectric material. The dielectric function is

physically analogous to the absolute permittivity in terms of its relationship to the

space materials. Figure 3.5(a) and 3.5(b) represent the real and imaginary dielectric

functions of ZrCrPb alloy with respect to the photon energy renges from 0 to 12 eV.

Figure 3.5(b) represents the imaginary part of dielectric function having maximum

losses at smaller energy range which predicts the half-metallic character of the alloy.

3.5.2 Absorption coefficient

Absorption of photons occur during the transition of an electron from an unoccupied

to an occupied state. Figure 3.6(a) represents the absorption coefficient of ZrCrPb

alloy with PBE approximation method. It can be observed in Figure 3.6(a) that

absorptivity increases progressively in the infrared and visible region, reaches a

maximum at 5 eV (ultra-violet region), and decreases with increasing energy values.

The absorption peak demonstrates that this material can absorb photons in both

the ultra-violet and visible ranges.
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Figure 3.6: a) Absorption coefficient b) Optical conductivity

3.5.3 Optical conductivity

The energy gap between the valance and conduction bands in semiconductors is

lower than in insulators. As a result, semiconductors are semi-good conductors with

a valance band that is completely vacant. The optical conductivity of computed

alloy is shown in Figure 3.6(b). It demonstrates that conductivity is highest in the

visible range for the alloy.

3.5.4 Reflectivity

Optical reflectivity is another parameter which plays a vital role in shifting elec-

tron from valance band to the conduction band. The amount of energy absorbed,

reflected, and transmitted by a material is equal to the incident photon energy.

Estimating the absorbance and transmittance of the substance on which light is

incident it is possible to compute the total amount of ray incident on the surface of

a semiconductor.

A+R + T = 1 (3.2)

where, A, R, and T represents the absorbance, reflectance, and transmittance of

a material respectively. The optical reflectivity of estimated half-Heusler alloy is

shown in Figure 3.7(a).
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Figure 3.7: a) Reflectivity b) Refractive index

3.5.5 Refractive index

Refraction index indicates that the quantity of light bending is highest in the infra-

red range in the visible zone. The presence of these peaks in the infrared suggest

that the refractive index of half-Heusler alloy is non-linear in nature. The refractive

index of the computed ZrCrPb alloy is shown in Figure 3.7(b). In conclusion, due of

the non linear absorbing capability and refractive index, the computed half-Heusler

alloy can be used in electro-mechanical applications that can absorb photons in both

the ultra-violet and visible regions.
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Chapter 4

Conclusions

We investigated the electronic, magnetic and optical properties of half-Heusler ZrCrPb

alloy using WIEN2k in the context of density functional theory and the PBE approx-

imation approach. The electronic and magnetic characteristics of the alloy with the

lowest energy were calculated. For up spin, the system estimates an indirect band

gap, providing a non-metallic character, whereas the system produces a metallic

band for down spin. As a result, electrical properties of the system are half-metallic

in nature. The magnetic moment of system is around 4 µB, indicating the ferromag-

netic contribution of the alloy. The optical absorptivity, conductivity, reflectivity,

refractive index and dielectric functions of the system were also investigated. From

imaginary dielectric function, we got the half-metallic character of the alloy.

30



List of Abbreviations

BZ : Brillouin Zone

DFT : Density Functional Theory

DOS : Density of States

XC : Exchange Correlation

FP-LAPW : Full-Potential Linear Augmented Plane Wave

GGA : Generalized Gradient Approximation

HK : Hohenberg-Kohn

HM : Half Metallic

KS : Kohn-Sham

PBE : Perdew-Burke-Ernzerhof

ZnS : Zinc Blende
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