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Abstract

In this work, the first-principles calulations have been performed to predict the

structural, electronic, magnetic and optical properties of terbium phosphide (TbP)

by using PBE-GGA approaches based on density functional theory (DFT) as imple-

mented in WIEN2k package. The spin-polarization calculation shows that TbP is

stabilized in zinc blende structure with magnetic moment of 6 µB. The band struc-

ture of TbP shows half-metallic behaviour. The optical properties likes dielectric

function, reflectivity, optical conductivity, refractive index and absorption coefficient

were also calculated for TbP in the zinc blende structure.
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Chapter 1

Introduction

Semiconductors are fundamental elements of contemporary electronics, revolution-

izing and advancing life on earth since they are a crucial component of devices. A

wide range of intriguing uses in electronics, device fabrication, and thin-film solar

cells [1] can be found for the well-known group II-VI and group III-V compounds

as semiconductors. Semiconductor components are used in photonic, electronic and

optoelectronic devices. They have electronic and optical properties. In addition

to their distinctive electronic characteristics, semiconductors with exceptional opti-

cal properties are viewed as novel prospects for a variety of optoelectronic devices,

including light-emitting and laser diodes [2], IC’s, electro-optic waveguide modula-

tors [3], high-electron-mobility-transistor (HEMT), metal-oxide-semiconductor ca-

pacitor (MOSCAP) [4] and heterostructure lasers [2]. Nowadays, material having

the properties for development of multifunctional device. The material which have

spintronic behaviour that are considered to be half metals using spin of electrons

rather than focusing on their conventional charge property. The individual aspect

of half-metal have two spin bands with different electronic structure. The majority

spin band behaves like metals and the minority spin band behaves semiconducting

trait along with a gap in the fermi level [5]. Researchers investigated zinc blende

(ZB) and rock salt (RS) type structures for half-metallic ferromagnetic compounds
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Introduction

because group III and V are stable in zinc blende or rock salt type structure as the

conventional binary semiconductors [6].

Since their early research helped close the gap between magnetism and quantum

mechanics [7], rare-earth elements have played a significant role in the periodic table

and more recently, their potential for enhanced energy storage has been explored.

By using the full potential linearized augmented plane wave (FP-LAPW) method,

the structural, electronic and optical properties of TbP have been studied based on

density functional theory (DFT) [8]. At first, we have studied the TbP structure

and stated the theoritical procedure for obtaining the structural properties and total

energies where we have used total energy minimization. In the present paper the

electronic band structure, the density of states and the optical properties have been

studied.
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Chapter 2

Theoretical background

2.1 Schrödinger’s equation

Schrödinger wave equation is one of the most fundamental equations of quantum

physics. The equation also called the Schrödinger equation is basically a differential

equation and widely used to solve problems based on the atomic structure of matter.

The Schrödinger wave equation describes the behaviour of a particle in field of force

or the change of a physical quantity over time. Erwin schrödinger who developed the

equation in 1926. Now, the time-depedent schrödinger equation [9] is represented as

i~
∂

∂t
Ψ(~r, t) = ĤΨ(~r, t) (2.1)

The Hamiltonian for a single particle

Ĥ = T̂ + V̂ = − ~2

2m
~∇2 + V (~r, t) (2.2)

leads to the time-dependent single-particle Schrödinger equation

i~
∂

∂t
Ψ(~r, t) = [− ~2

2m
~∇2 + V (~r, t)]Ψ(~r, t) (2.3)

3
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For N particles in three dimensions, the Hamiltonian is

Ĥ =
N∑
i=1

p̂2i
2mi

+ V (~r1, ~r2, ..., ~rN , t) = −~2

2

N∑
i=1

1

mi

+ V (~r1, ~r2, ..., ~rN , t) (2.4)

The corresponding Schrödinger equation reads

i~
∂

∂t
ψ(~r1, ~r2, ..., ~rN , t) = [−~2

2

N∑
i=1

1

mi

~∇2
i +V (~r1, ~r2, ..., ~rN , t)]ψ(~r1, ~r2, ..., ~rN , t) (2.5)

The solutions of the time-independent Schrödinger equation are special cases, where

the Hamiltonian itself has no time-dependency (which implies a time-independent

potential V (~r1, ~r2, ...~rN), and the solutions therefore describe standing waves which

are called stationary states or orbitals).

The time-independent equation is obtained by the approach of separation of vari-

ables, i.e. the spatial part of the wave function is separated from the temporal part

[10]

Ψ(~r1, ~r2, ..., ~rN , t) = ψ(~r1, ~r2, ..., ~rN)τ(t) = ψ(~r1, ~r2, ..., ~rN)e−iωt (2.6)

Furtheremore, the left hand side of the equation reduces to the energy eigenvalue of

the Hamiltonian multiplied by the wave function, leading to the general eigenvalue

equation

Eψ(~r1, ~r2, ..., ~rN) = Ĥψ(~r1, ~r2, ..., ~rN) (2.7)

Again, using the many-body Hamiltonian, the Schrödinger equation becomes

Eψ(~r1, ~r2, ..., ~rN) = [−~2

2

N∑
i=1

1

mi

~∇2
i + V (~r1, ~r2, ..., ~rN)]ψ(~r1, ~r2, ..., ~rN) (2.8)

2.2 The wave function

The state of a particle is completed described by (time-dependent) wave function,

i.e. the wave function contains all information about the particle’s state. The Born

probability interpretation of the wave function, which is a major principle of the

4
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Copenhagen interpretation of quantum mechanics, provides a physical interpretation

for the square of the wave function as a probability density [11]

|ψ(~r1, ~r2, ..., ~rN)|2d~r1d~r2...d~rN (2.9)

Equation (2.9) describes the probability that particles 1, 2, ..., N are located simul-

taneously in the corresponding volume element d~r1d~r2...d~rN [12]. If the positions of

two particles are exchanged, the overall probability density can not depend on such

an exchange, i.e.

|ψ(~r1, ~r2, ..., ~ri, ~rj, ..., ~rN)|2 = |ψ(~r1, ~r2, ..., ~ri, ~rj, ..., ~rN)|2 (2.10)

There are only two possibilities for the behavior of the wave function during a particle

exchange. The first one is symmetrical wave function, which does not change due to

such an exchange. This corresponds to bosons (particles with integer or zero spin).

The other possibility is an anti-symmetrical wave function, where an exchange of

two particles causes a sign change, which corresponds to fermions (particles which

half-integer spin). [13]

The anti-symmetric fermion wave function leads to the Pauli principle, which states

that no two electrons can occupy the same state, whereas state means the orbital

and spin parts of the wave function. [14] Another consequence of the probability

interpretation is the normalization of the wave function. If equation (2.9) describes

the probability of finding a particle in a probability of one, i.e. all particles must be

found somewhere in space. This corresponds to the normalization condition for the

wave function. ∫
d~r1

∫
d~r2...

∫
d~rN |ψ(~r1, ~r2, ..., ~rN)|2 = 1 (2.11)

Equation (2.11) also gives insight on the requirements a wave function must fulfill

in order to be physical acceptable. Wave functions must be continuous over the full

spatial range and square-integratable. [15]

Another very important property of the wave function is that calculating expectation

value of the corresponding observable for that wave function. For an observable

5
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O(~r1, ~r2, ..., ~rN), this can generally be written as

O = 〈O〉 =

∫
d~r1

∫
d~r2...

∫
d~rNψ

∗(~r1, ~r2, ..., ~rN)Ôψ(~r1, ~r2, ..., ~rN) (2.12)

2.3 Many-body system and Born-Oppenheimer (BO)

approximation

The Hamiltonian of a many-body system consisting of nuclei and electrons can be

written as [16]

Htot = −
∑
I

~2

2MI

~∇2
RI
−
∑
i

~2

2Me

~∇2
ri

+
1

2

∑
I,J

ZIZJe
2

|RI −RJ |
+

1

2

∑
i,j

e2

|ri − rj|
−
∑
I,i

ZIe
2

|RI − ri|
(2.13)

where the indexes I, J run on electrons, RI and MI are positions and masses of the

nuclei, ri and Me of the electrons, ZI the atomic number of number of nucleus I. The

first term is the kinetic energy of the nuclei, the second term is the kinetic energy

of the electron, the third term is the potential energy of nucleus-nucleus Coulomb

interaction, the fourth term is the potential energy of electron-electron Coulomb

interaction and the last term is the potential energy of nucleus-electron Coulomb

interaction. [17] The time-independent Schrödinger equation for the system:

HtotΨ({RI}, {ri}) = Eψ({RI}, {ri}) (2.14)

where ψ({RI}, {ri}) is the total wavefunction of the system. Everything about the

system is known if one can solve the above Schrödinger equation. However, it is im-

possible to solve it in practice. A so-called Born-Oppenheimer (BO) approximation

was made by Born and Oppenheimer [18] in 1927. Since the nuclei are much heavier

than electrons, the nuclei move much slower than the electrons. Therefore we can

separate the movement of nuclei and electrons. When we consider the movement

of electrons, it is responsible to consider the positions of nuclei are fixed, thus the

6
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total wavefunction can be written as:

ψ({RI}, {ri}) = Θ({RI})φ({ri}; {RI}) (2.15)

where Θ({RI}) describes the nuclei and φ({ri}; {RI}) the electrons. With the BO

approximation, Eq. (2.15) can be divided into two separate Schrödinger equations:

Heφ({ri}; {RI}) = V ({RI})φ({ri}; {RI}) (2.16)

where

He = −
∑
i

~2

2Me

~∇2
ri

+
1

2

∑
I,J

ZIZJe
2

|RI −RJ |
+

1

2

∑
i,j

e2

|ri − rj|
−
∑
I,i

ZIe
2

|RI − ri|
(2.17)

and

[−
∑
I

~2

2MI

~∇2
RI

+ V ({RI})]Θ({RI}) = E
′
Θ({Ri}) (2.18)

Eq.(2.16) is the equation for the electronic problem with the nuclei positions fixed.

The eigenvalue of the energy V ({RI}) depends on the positions of the nuclei. After

solving Eq. (2.22), V ({RI}) is known and by applying it to Eq. (2.18), which has

no electronic degrees of freedom, the motion of the nuclei is to obtained.

The significance of the BO approximation is to separate the movement of electrons

and nuclei. The electrons are moving in a static external potential Vext(r) formed by

the nuclei, which is the starting point of DFT. The BO approximation was extended

by Bohn and Huang known as Born-Huang (BH) approximation [19] to take into

account more nonadiabatic effect in the electronic Hamiltonian than in the BO

approximation.

2.4 The Hartree-Fock approach

Observables in quantum mechanics are calculated as the expectation values of op-

erators. [11] The energy as observable corresponds to the Hamiltonian operator,

7
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therefore the energy corresponding to a general Hamiltonian can be calculated as

E = 〈Ĥ〉 =

∫
d~r1

∫
d~r2...

∫
d~rNψ

∗(~r1, ~r2, ..., ~rN)Ĥψ(~r1, ~r2, ..., ~rN) (2.19)

The central idea of the Hartree-Fock approach is that the energy obtained by any

(normalized) trial wave function, different from the actual ground state wave func-

tion, is always an upper bound, i.e. higher than the actual ground state energy. If

the trial function happens to be the desired ground state wave function, the energy

are equal

Etrial ≥ E0 (2.20)

with

Etrial =

∫
d~r1

∫
d~r2...

∫
d~rNψ

∗
trial(~r1, ~r2, ..., ~rN)Ĥψtrial(~r1, ~r2, ..., ~rN) (2.21)

and

E0 =

∫
d~r1

∫
d~r2...

∫
d~rNψ

∗
0(~r1, ~r2, ..., ~rN)Ĥψ0(~r1, ~r2, ..., ~rN) (2.22)

The expressions above are usually inconvenient to handle. For the sake of a compact

notation, the following the bra-ket notation of Dirac is introduced. [20]

In that notation, equation (2.20) to (2.22) are expressed as

〈ψtrial|Ĥ|ψtrial〉 = Etrial ≥ E0 = 〈ψ0|Ĥ|ψ0〉 (2.23)

Proof: The eigenfunctions ψi of the Hamiltonian Ĥ (each corresponding to an energy

eigenvalue Ei) form a complete basis set, therefore any normalized trial wave function

ψtrial can be linear combination of those eigenfunctions.

ψtrial =
∑
i

λiψi (2.24)

The assumption is made that the eigenfunctions are orthogonal and normalized.

8
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Hence it is requested that the trial wave function is normalized, it follows that

〈ψtrial|Ĥ|ψtrial〉 = 1 = 〈
∑
i

λiψi|
∑
j

λjψj〉 =
∑
i

∑
j

λ∗iλj〈ψi|ψj〉 =
∑
j

|λj|2 (2.25)

On the other hand, following (2.23) and (2.25)

Etrial = 〈ψtrial|Ĥ|ψtrial〉 = 〈
∑
i

λiψi|Ĥ|
∑
j

λjψj〉 =
∑
j

Ej|λj|2 (2.26)

Together with the fact that the ground state energy E0 is per definition the lowest

possible energy, and therefore has the smallest eigenvalue (E0 ≤ Ei), it is found that

Etrial =
∑
j

Ej|λj|2 ≥ E0

∑
j

|λj|2 (2.27)

what resembles equation (2.23).

Equations (2.19) to (2.27) also include that a search for the minimal energy value

while applied on all allowed N-electron wave-functions will always provide the ground-

state wave function (or wave functions, in case of a degenerate ground state where

more than one wave function provides the minimum energy). Expressed in terms of

functional calculus, where ψ −→ N addresses all allowed N-electron wave functions,

this means [21]

E0 = min
ψ→N

E[ψ] = min
ψ→N
〈ψ|Ĥ|ψ〉 = min

ψ→N
〈ψ|T̂ + V̂ + Û |ψ〉. (2.28)

For N-electron systems this search is, due to the large number of possible wave func-

tions on the one hand and limitations in computational power and time, practically

impossible. What is possible is the restriction of the search to a smaller subset of

possible wave function, as it is done in the Hartree-Fock approximation.

In the Hartree-Fock approach, the search is restricted to approximations of the N-

electron wave function by an antisymmetric product of N (normalized) one-electron

wave-functions, the so called spin-orbitals χi(~xi). A wave function of this type is

called Slater-determinant, and reads

9
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ψ0 ≈ φSD = (N !)−
1
2

∣∣∣∣∣∣∣∣∣∣∣∣

χ1(~x1) χ2(~x1) · · · χN(~x1)

χ1(~x2) χ2(~x2) · · · χN(~x2)
...

...
. . .

...

χ1(~xN) χ2(~xN) · · · χN(~xN)

∣∣∣∣∣∣∣∣∣∣∣∣
(2.29)

It is important to notice that the spin-orbitals χi(~xi) are not only depending on

spatial coordinates but also on a spin coordinate which is introduced by a spin

function, ~xi = ~ri, s

The ground state energy approximated by a single slater determinan becomes

E0 = min
φSD→N

E[φSD] = min
φSD→N

〈φSD|T̂ + V̂ + Û |φSD〉 (2.30)

A general expression for the Hartree-Fock energy is obtained by usage of the Slater

determinant as a trial function

EHF = 〈φSD|Ĥ|φSD〉 = 〈φSD|T̂ + V̂ + Û |φSD〉 (2.31)

The final expression for the Hartree-Fock energy contains three major parts

ESD = 〈φSD|Ĥ|φSD〉 =
N∑
i

(i|ĥ|i) +
1

2

N∑
i

N∑
j

[(ii|jj)− (ij|ji)] (2.32)

with

(i|ĥ|i) =

∫
χ∗i (~xi)[−

1

2
~∇2
i −

M∑
k=1

Zk
rik

]χi(~xi)d~xi, (2.33)

(ii|jj) =

∫ ∫
|χi(~xi)|2

1

rij
|χj(~xj)|2d~xid~xj, (2.34)

(ii|jj) =

∫ ∫
χi(~xi)χ

∗
j(~xj)

1

rij
χj(~xj)χ

∗(~xi)d~xid~xj, (2.35)

Finally, one arrives at

f̂χi = λiχi, i = 1, 2, ..., N (2.36)

10
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with

f̂i = −1

2
~∇2
i −

M∑
k=1

Zk
rik

+
N∑
i

[Ĵj(~xi)− K̂j(~xi)] = ĥi + V̂ HF (i) (2.37)

the Fock operator for the i-th electron. In similarity to (2.32) to (2.35), the first two

terms represent the kinetic and potential energy due to nucleus-electron interaction,

collected in the core Hamiltonian hi, whereas the latter terms are sums over the

Coulomb operators Ĵj and the exchange operators K̂j with the other j electrons,

which form the Hartree-Fock potential V̂ HF .

The two electron repulsion operator from the original Hamiltonian is exchanged by

a one-electron operator V̂ HF which describes the repulsion in average. [21]

2.4.1 Limitation and failings of the Hartree-Fock approach

Atoms as well as molecules can have an even or odd number of electrons. If the

number of electrons is even and all of them are located in double occupied spatial

orbitals φi the Compound is in a single state. Such systems are called closed-shell

systems. Compounds with an odd number of electrons as well as compounds with

single occupied orbitals, i.e. species with triplet or higher ground state, are called

open-shell system respectively. These two types of systems correspond to two differ-

ent approaches of the Hartree-Fock method. In the restricted HF-method (RHF),

all electrons are considered to be paired in orbitals whereas in the unrestricted

HF (UHF)- method this limitation is lifted totally. It is also possible to describe

open-shell systems with a RHF approach where only the single occupied orbitals

are excluded which is then called a restricted open-shell HF (ROHF) which is an

approach closer to reality but also more complex and therefore less popular than

UHF. [21]

The size of the investigated system can also be a limiting factor for calculations.

Kohn states a number of M = p5 with 3p10 parameters for a result with sufficient

accuracy in the investigation of the H2 system. [22] For a system with N = 100

(active) electrons the number of parameters rises to

M = p3N = 3300to10300 ≈ 10150to10300 (2.38)

11
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Since a many electron wave function cannot be described entirely by a single Slater

determinant, the energy obtained by HF calculations is always larger than the exact

ground state energy. The most accurate energy obtainable by HF-methods is called

the Hartree-Fock-limit. The difference between EHF and Eexact is called correlation

energy and can be denoted as [23]

EHF
corr = Emin − EHF (2.39)

Despite the fact that Ecorr is usually small against Emin, as in the example of a N2

molecule where

EHF
corr = 14.9eV < 0.001.Emin, (2.40)

it can have a huge influence. [24]

For instance, the experimental dissociation energy of the N2 molecule is

Ediss = 9.9eV < Ecorr (2.41)

which corresponds to a large contribution of the correlation energy to relative en-

ergies such as reaction energies which are of particular interest in quantum chem-

istry. [24] The main contribution to the correlation energy arises from the mean

field approximation used in the HF-method. That means one electron moves in the

average field of the other ones, an approach which completely neglects the intrinsic

correlation of the electron movements. To get a better understanding what that

means, one may picture the repulsion of electrons at small distances which clearly

cannot be covered by a mean-field approach like the Hartree-Fock-method. [21]

2.5 The electron density

The electron density (for N electrons) as the basic variable of density functional

theory is defined as [25]

n(~r) = N
∑
s1

∫
d~x2...

∫
d~xNψ

∗(~x1, ~x2, ..., ~xN)ψ(~x1, ~x2, ..., ~xN) (2.42)

12



Theoretical background

If additionally the spin coordinates are neglected, the electron density can even be

expressed as measurable observable only dependent on spatial coordinates [26]

n(~r) = N

∫
d~r2...

∫
d~rNψ

∗(~r1, ~r2, ..., ~rN)ψ(~r1, ~r2, ..., ~rN) (2.43)

which can e.g. be measured by X-ray diffraction. [21]

Before presenting an approach using the electron density as variable, it has to be

ensured that it truly contains all necessary informations about the system. In detail

that means it has to contain information about the electron number N as well as

the external potential characterized by V̂ . The total number of electrons can be

obtained by integration the electron density over the spatial variables

N =

∫
d~rn(~r) (2.44)

2.6 Thomas-Fermi-Dirac approximation

In 1927, the predecessor to DFT was the Thomas-Fermi (TF) model proposed by

Thomas [27] and Fermi [28]. They used the electron density n(r) as the basic

variable instead of the wavefunction. The total energy of a system in an external

potential Vext(r) is written as a functional of the electron density Vext(r) as:

ETF [n(r)] = A1

∫
n(r)

5
3dr +

∫
n(r)Vext(r)dr +

1

2

∫ ∫
n(r)n(r)

′

|r − r
′ |
drdr

′
(2.45)

where the first term is the kinetic energy of the non-interacting electrons in a ho-

mogeneous electron gas (HEG) with A1 = 3
10

(3π2)
2
3 in atomic units. The kinetic

energy density of a HEG is obtained by adding up all of the free electron energy

state εk = k2

2
up to the Fermi wavevector kF = [3π2n(r)]

1
3 as:

t0[n(r)] =
2

(2π)3

∫ kF

0

k2

2
4πk2dk

= A1n(r)
5
3
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The second term is the classical electrostatic energy of the nucleus-electron Coulomb

interaction. The third term is the classical electrostatic Hartree energy approxi-

mated by the classical Coulomb repulsion between electrons. In the original TF

method, the exchange and correlation among electron was neglected. In 1930,

Dirac [29] extended the Thomas-Fermi method by adding a local exchange term

A2

∫
n(r)

4
3dr to eq.(2.45) with A2 = −3

4
( 3
π
)
1
3 , which leads eq. (3.4) to

ETFD[n(r)] = A1

∫
n(r)

5
3dr+

∫
n(r)Vext(r)dr+

1

2

∫ ∫
n(r)n(r)

′

|r − r
′ |
drdr

′
+A2

∫
n(r)

4
3dr

(2.46)

The ground state density and energy can be obtained by minimizing the Thomas-

Fermi-Dirac equation (2.46) subject to conservation of the total number (N) of

electrons. By using the technique of Lagrange multipliers, the solution can be found

in the stationary condition:

δ{ETFD[n(r)]− µ(

∫
n(r)dr −N)} = 0 (2.47)

where µ is a constant known as a Lagrange multipliers, whose physical meaning

is the chemical potential (or Fermi energy at T = 0 K). Eq. (2.47) leads to the

Thomas-Fermi-Dirac equation,

5

4
A1n(r)

2
3 + Vext(r) +

∫
n(r

′
)

|r − r
′ |
dr

′
+

4

3
A2n(r)

1
3 − µ = 0 (2.48)

which can be solved directly to obtain the ground state density.

2.7 Hohenberg-Khon (HK) theorems

In 1964, DFT was proven to be an exact theory of many-body systems by Hohenberg

and Khon [30]. It applies to condensed-matter systems of electrons with fixed nuclei,

and also to any system of interacting particles in an external potential Vext(~r). The

theory is based upon two theorems.
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2.7.1 The HK theorem I

The ground state particle density n(~r) of a system of interacting particle in an exter-

nal potential Vext(~r) uniquely determines the external potential Vext(~r), except for

a constant. Thus the ground state particle density determines the full hamiltonian,

except for a constant shift of the energy. In principle, all the states including ground

and excited states of many-body wavefunctions can be calculated. This means that

the ground state particle density uniquely determines all properties of the system

completely.

Proof of the HK theorem I

For simplicity, consider the case that the ground state of the system is nondegener-

ate. It can be proven that the theorem is valid for systems with degenerate ground

states. [31] The proof is based on minimum energy principle. Suppose there are two

different external potentials Vext(~r) and V
′
ext(~r) which differ by more than a con-

stant and lead to the same ground state density n0(~r). The two external potentials

would give two different Hamiltonians, Ĥ and Ĥ
′
, which have the same ground state

density n0(~r) but would have different ground state wavefunctions, Ψ and Ψ
′
, with

Ĥψ = E0ψ and Ĥ
′
ψ

′
= E

′
0ψ

′
. Since ψ

′
is not the ground state of Ĥ, it follows that

E0 < 〈Ψ
′ |Ĥ|Ψ′〉

< 〈Ψ′ |Ĥ ′ |Ψ′〉+ 〈Ψ′|Ĥ − Ĥ ′ |Ψ′〉 (2.49)

< E
′

0 +

∫
n0(r)[Vext(r)− V ′

ext(r)]dr

Similarly

E
′

0 < 〈Ψ|Ĥ|Ψ〉

< 〈Ψ|Ĥ|Ψ〉+ 〈Ψ|Ĥ ′ − Ĥ|Ψ〉 (2.50)
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< E0 +

∫
n0(r)[V

′

ext(r)− Vext(r)]dr

Adding eq. (2.49) and (2.50) lead to the contradiction

E0 + E
′

0 < E0 + E
′

0 (2.51)

Hence, the ground state density determines the external potential Vext(~r), except

for a constant. There is one-to-one mapping between the ground state density n0(~r)

and the external potential Vext(~r), although the exact formula is unknown.

2.7.2 The HK theorem II

There exists a universal functional F [n(r)] of the density, independent of the exter-

nal potential Vext(~r), such that the global minimum value of the energy functional

E[Ψ
′
] ≡

∫
n(r)Vext(r)dr + F [n(r)] is the exact ground state energy of the system

and the exact ground state density n0(r) minimizes this functional. Thus the exact

ground state energy and density are fully determined by the functional E[Ψ
′
].

Proof of the HK theorem II

The universal functional F [n(r)] can be written as

F [n(r)] ≡ T [n(r)] + Eint[n(r)] (2.52)

where T [n(r)] is the kinetic energy and Eint[n(r)] is the interaction energy of the

particles. According to variational principle, for any wavefunction Ψ
′
, the energy

functional E[Ψ
′
]:

E[Ψ
′
] ≡ 〈Ψ′ |T̂ + V̂int + V̂ext|Ψ

′
(2.53)

has its global minimum value only when Ψ
′

is the ground state wavefunction ψ0

with the constraint that the total number of the particle is conserved. According

to HK theorem I, Ψ
′

must correspond to a ground state with particle density n
′
(r)

and external potential V
′
ext(r), then E[Ψ

′
] is a functional of n

′
(r). According to
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variational principle:

E[Ψ
′
] ≡ 〈Ψ′ |T̂ + V̂int + V̂ext|Ψ

′

= E[n
′
(r)]

=

∫
n

′
(r)V

′

ext(r)dr + F [n
′
(r)] (2.54)

> E[Ψ0]

=

∫
n0(r)Vext(r)dr + F [n0(r)]

= E[n0(r)]

Thus the energy functional E[Ψ
′
] ≡

∫
n(r)Vext(r)dr + F [n(r)] evaluated for the

correct ground state density n0(r) is indeed lower than the value of this functional

for any other density n(r). Therefore by minimizing the total energy functional of

the system with respect to variations in the density n(r), one would find the exact

ground state density and energy. [32]

2.8 The Kohn-Sham equations

The framework by Hohenberg and Kohn is exact, yet not very useful in actual calcu-

lations. The only possibility would be the direct use of the second Hohenberg-Kohn

theorem for energy minimization, a way that is possible in general but has proven

itself to be impractical. [16]

The Hartree-equations are clearly wave-function based and not directly related to
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the work of Hohnberg and Kohn, yet they have been proven very useful. Hartree’s

approximation assumes that every electron moves in an effective single-particle po-

tential of the form

vH(~r) = − Z
|~r|

+

∫
n(~r

′
)

|~r − ~r′
d~r (2.55)

The first term is an attractive Coulomb potential of a nucleus with atomic number Z,

whereas the integral term corresponds to the potential caused by the mean electron

density distribution n(~r).

The mean density can be denoted in terms of the single particle wave functions

n(~r) =
M∑
j=1

|φj(~r)|2 (2.56)

Since the electron-electron interactions are taken into account in the potential term,

the N-electron and therefore (neglecting the spin coordinates) 3N-dimensional Schrdinger

equation can be approximately replaced by N 3-dimensional single particle equations

for electrons moving in an effective potential defined in (2.55):

[−1

2
~∇2 + vH(~r)]φj(~r) = εjφj(~r) (2.57)

Therefore, Kohn and Sham investigated the density functional theory applied to a

system of N non-interacting electrons in an external potential, similar to Hartree’s

approach. The expression for the energy of such a system is of the form

Ev(~r)[n
′
(~r)] ≡

∫
v(~r)n

′
(~r)d~r + d~r + TS[n

′
(~r)] ≥ E (2.58)

where n
′
(~r) is a v-representable density for non-interacting electrons and TS[n

′
(~r)]

the kinetic energy of the ground state of those non-interacting electrons. [26]

Setup of the Euler-Lagrange equation [33] for the non-interacting case (2.58) with

the density defined in (2.56) as argument provides [26]

δEv[n
′
(~r)] ≡

∫
δn

′
(~r)[v(~r) +

δ

δn′(~r)
TS[n

′
(~r)]|n′ (~r)=n(~r) − ε]d~r = 0 (2.59)
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For a system of non-interacting electrons, the total ground state energy and particle

density can therefore simply be denoted as the sums

E =
N∑
j=1

εj (2.60)

and

n(~r) =
N∑
j=1

|φj(~r)|2 (2.61)

In addition, Kohn and Sham used the universal functional as an alternative formu-

lation, [8]

F [n
′
(~r)] ≡ TS[n

′
(~r)] +

1

2

∫
[n

′
(~r)][n

′
(~r

′
)]

|~r − ~r′|
d~rd~r

′
+ Exc[n

′
(~r)]. (2.62)

In (2.62) TS [n
′
(~r)] is the kinetic energy functional of non-interacting electrons

(which is not even for the same density n(~r) the true kinetic energy of the inter-

acting system ) and the second term is the so-called Hartree term which describes

the electrostatic self-repulsion of the electron density. [34] The last term is called

exchange-correlation term. It is implicitly defined by (2.62) and can in practice only

be approximated. The quality of the approximation for Exc[n
′
(~r)] is therefore one

of the key issues in DFT. [26]

Construction of the Euler-Lagrange equations for the interacting case in equation

(2.62) provides

δEv[n
′
(~r)] ≡

∫
δn

′
(~r)[veff (~r) +

δ

δn′(~r)
TS[n

′
(~r)]|n′ (~r)=n(~r) − ε]d~r = 0 (2.63)

with

veff (~r) ≡ v(~r) +

∫
[n(~r)]

|~r − ~r′|
d~r + vxc(~r) (2.64)

and the functional derivative

vxc(~r) ≡
δ

δn′(~r)
Exc[n

′
(~r)]|n′ (~r)=n(~r) (2.65)
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Figure 2.1: Flowchart of self-consistency loop for solving KS equations

whereas the Euler-Lagrange equation resembles (2.59) up to the potential term.

Because of that, the minimizing density can be calculated in a way similar to the

Hartree- approach described in equations (2.55) to (2.57). The corresponding equa-

tions are the single-particle Schrödinger equations

[−1

2
~∇2 + veff (~r)]φj(~r) = εjφj(~r)j = 1, ..., N (2.66)
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as well as the defining equation for the particle density

n(~r) =
M∑
j=1

|φj(~r)|2, (2.67)

which form together with the effective potential veff (~r) in (2.64) the self-consistent

Kohn-Sham equations. [8]

The accurate ground state energy, as one of the most important quantities, can be

expressed as [26]

E =
∑
j

εj + Exc[n(~r)]−
∫
vxc(~r)n(~r)dv − 1

2

∫
[n

′
(~r)][n

′
(~r

′
)]

|~r − ~r′|
d~rd~r

′
. (2.68)

Equation (2.68) can be seen as an generalization of the energy expression obtained

with the Hartree-approach (note that the neglect of Exc[n(~r)] and vxc(~r)[n(~r)] leads

back to equation (2.60)). [26]

2.9 Exchange-correlation functional

The major problem in solving the Khon-Sham equations is that the true form of the

exchange-correlation functional is not known. Two main approximation methods

have been implemented to approximate the exchange-correlation functional. The

local density approximation (LDA) is first approach to approximate the exchange-

correlation functional in DFT calculations. The second well known class of ap-

proximations to the Khon-Sham exchange-correlation functional is the generalized

gradient approximation (GGA). In the GGA approximation the exchange and cor-

relations energies include the local electron density and the local gradient in the

electron density. [35]
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Chapter 3

The electronic, magnetic and

optical properties of TbP

3.1 Method of calculations

Under the framework of density of density functional theory, the structural, elec-

tronic, optical properties of the TbP are investigated using full potential linearized

augmented plane (FP-LAPW) method, approach implemented in the WIEN2k pack-

age. The generalized gradient approximation (GGA) for determining the exchange

and correlation potential energy in Khon-Sham equation that gives the final result.

The generalized gradient approximation is used to optimize the parameters (RKmax,

K-point, and lattice constant). For Tb and P, the RMT values are taken 2.3 and

2.1 respectively. We set RKmax = 8.5 after optimization of energy where, R is the

smallest radius of muffin-tin sphere and Kmax is the largest reciprocal lattice vector

that used in the expansion of flat wave-function. Moreover, the number of K-point

is selected to 1000 in Brillouin zone. When the total energy of the system is stable

within the energy of 10−4 Ry then self-consistent equations is converged.
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3.2 Geometric structure and volume optimization

The rare earth TbP has two types of structures. Rock salt (RS) type structure with

the space group (225, Fm3̄m) with Tb atoms located at (0, 0, 0) and P atoms at

(
1

2
,
1

2
,
1

2
) and in zinc blende type structure belonging to cubic crystal system with

the space group (216, F43̄m), though the Tb atoms occupies the same (0, 0, 0) posi-

tion, P atoms occupies (
1

4
,
1

4
,
1

4
) position. Figure 3.1(a, b) shows the representation

of the structure of the TbP. The Murnaghan equation of state is used to compute

Figure 3.1: Crystal structure of TbP a) rock salt and b) zinc blende type structure

energy as a function of latice constant in order to determine the stability of the

compound in the structure under investigation before moving on to any electronic

or magnetic properties. The volume optimization is provided with WIEN2k package

that determines the minimum energy possessed by a system by plotting volume vs

energy graph. It is clear that every system tries to in its minimum energy level, and

so we plotted total energy vs volume plots from non-magnetic (NM), and ferromag-

netic (FM) calculation are shown in Figure 3.2(a-d) for TbP. From energy vs volume

plot we obtain lattice constant. Table 3.1 represents the calculated total energy and

lattice constant.

Compound Structure type Phase Total energy (Ry) Lattice constant (Å)
RS NM -24122.229336 5.673

TbP FM -24122.660121 5.696
ZB NM -24122.138711 6.313

FM -24122.561569 6.305

Table 3.1: Calculated total energy and lattice constant of TbP
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Figure 3.2: Volume optimization of TbP a) non-magnetic and b) magnetic phases for

RS type structure, c) non-magnetic and b) magnetic phases for ZB type structure

3.3 Electronic properties

We must use generalized gradient approximation GGA, which is available as Perdew-

Burke-Ernzerhof (PBE) functional, to calculate the spin polarization band structure

and total density of state (TDOS) in order to understand the electrical properties

of TbP.

3.3.1 Band structures

Understanding the physical characteristics of crystalline solids, which nearly entirely

define optical as well as transport aspects, requires research of the electronic band

structures. The spin polarization band structure of TbP for both the spin-up and

down channels at equilibrium state along high symmetry direction in the first Bril-

louin zone are represented in Figure 3.3. Zero is chosen as fermi level. For rock salt

type structure, spin polarization calculation shows that the valency bands overlap

with conduction band in both sipn-up and spin-down band structures and the fermi

level passing through the overlapping region shown in Figure 3.3(a, b). For this
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Figure 3.3: Calculated band structures of TbP a) spin-up and b) spin-down for RS type

structure, c) spin-up and d) spin-down for ZB type structure

reason, there is no band gap. For zinc blende type structure, in Figure 3.3(c) spin

polarization calculation shows that there is a band gap between valence band and the

conduction band in spin-up band structures but spin-down band structures shows

no bandgap shown in Figure 3.3(d) which indicates these compound is half-metallic.

3.3.2 Density of states

The density of states (DOS) is essentially the number of different states at a par-

ticular energy level that electrons are allowed to occupy, i.e. the number of electron
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states per unit volume per unit energy.
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Figure 3.4: (a, b) Total density of states (DOS) of TbP for RS and ZB type structure,

and (c, d) partial density of states of Tb atoms and (e, f) partial density of states of P

atoms for RS and ZB type structures

Calculating the total density of states and partial density of state with GGA is

required for the study of materials’ electronic characteristics. Figure 3.4(a-f), shows

the corresponding total density of states and partial density of states. The PDOS

of Tb contains orbital d, f electrons for spin-up and spin-down for TbP is plotted in

Figure 3.4(c) and Figure 3.4(d). Similarly the PDOS of P is also plotted in Figure

3.4(e) and Figure 3.4(f). The lower portion indicates the minority spin density while

the upper portion indicates the majority spin density. For rock salt type of structure
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Compound Individual magnetic moments(µB)
Site GGA

Intersititial 0.11863
TbP Tb 5.87454

P 0.00847
Total 6.00164

Table 3.2: Total spin magnetic moment of TbP in GGA approach

of TbP, in Figure 3.4(a) depicts the conduction band and valence band overlaps at

fermi level. This indicates that the system is matelic. Figure 3.4(b) shows shows

the system is half metallic.

3.4 Magnetic properties

The ferromagnetic ordering in the TbP is indicated by the spin-polarized calcu-

lations. The ferromagnetic TbP cell produced a magnetic moment of 6µB. The

electronic configuration of Tb is [Xe]3s
23p36s2 where as for P the electronic configu-

ration is [Ne]3s
23p3. The valence electron of Tb plays an important role in increase

in the magnetic moment in TbP. The total spin magnetic moment was found out to

be 6.00163 µB in GGA approach. Using PBE potential, the magnetic moment of Tb

atom is 5.87454 µB which is positive and 0.00847 µB is the magnetic moment of P

atom that express the ferromagnetic ordering of the magnetic state. The total spin

magnetic moment from spin polarization calculation of zinc blende type structure

is shown in Table 3.2.

3.5 Optical properties

The optical properties of a material defines how it interacts with light. We have

studied the dielectric function, reflectivity, optical conductivity, refractive index, ab-

sorption coefficient, and electron energy loss for understanding the optical properties

of TbP by means of the FP-LAPW method and generalized gradient approximation

(GGA).
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3.5.1 Dielectric function

The correlation between energy band structure and optical transition is expressed

by the complex dielectric function of a material.The complex dielectric function of

the semiconductor material is

ε(ω) = ε1(ω) + iε2(ω) (3.1)

The complex dielectric function,real dielectric function and imaginary dielectric

function are denoted by ε(ω), ε1(ω) and iε2(ω) respectively. Based on the band-

structure results, the dielectric function can be calculated. The imaginary part of

the dielectric function is obtained from the electronic structure. The real part of

the dielectric function is calculated by the Kramers-Kronig relation. The imaginary

part of the dielectric function depends on the joint density of state and the mo-

mentum matrix elements, while the real part is obtained from the Kramers-Kronig

relation. It indicates the changing inter-band transitions in the semiconductor. The

real part and imaginary parts between 0 and 12 eV are shown in Figure 3.5(a, b)

where energy is plotted in the X-direction, real and imaginary dielectric function is

plotted in Y-direction.
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Figure 3.5: Dielectric function of TbP a) real b) imaginary

The real dielectric function represents the degree of polarization and energy dissipa-

tion amplitude is represented by imaginary dielectric function. The positive part of

the real dielectric function indicates that TbP conducts at low energy levels, where
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the negative part of the real dielectric function indicates that it is insulating at

high energy levels. Real dielectric function is maximum in infra-red region for rock

salt and zinc blende type structure shown in Figure 3.5(a) where the propagation

of electromagnetic wave is maximum at 1.5 eV. Figure 3.5(b) shows the imaginary

dielectric function is maximum in infra-red region at 2 eV for RS type structure

whereas ZB type structure shows maximum values in ultra-violet region at 4.1 eV.

The maximum value represents charge carriers shifting from filled to empty bands.

3.5.2 Reflectivity and optical conductivity

Optical reflectivity helps to measure that a substance can be used for shielding

purposes as an anti-reflecting coating. The optical reflectivity versus photon energy

is shown in Figure 3.6(a) by using PBE functional. The reflectivity is being minimum

in infra-red and visible region for both type of structure. For zinc blende type

structure, the reflection occurs minimum at 0.5 eV. Whereas for rock salt type

structure, the minimum reflection occurs at 11 eV. At higher energy region the

reflectivity is maximum that means the system reflects more light. The maximum

reflectivity occurs in UV region at 10 eV for rock salt type structure and at 12 eV

for zinc blende type structure. High optical reflectivity represents strong metallic

properties of the compound TbP.
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Figure 3.6: Calculated c) optical reflectivity and d) optical conductivity of TbP

The ability of a medium to initiate a phenomenon of conduction as the electromag-

netic radiation try to propagate through it determines by optical conductivity. The

dielectric function leads to the conclusion that the optical conductivity. It is given
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The electronic, magnetic and optical properties of TbP

by,

σ(ω) = −(iω/4π)ε(ω) (3.2)

The curve of the optical conductivity vs energy calculated with PBE approximation

are shown in Figure 3.6(b) for TbP. The optical conductivity spectra using the imag-

inary part of the dielectric function have been studied. A range of energies between 0

eV to 16 eV has been calculated. This figure also shows the conductivity increased

as energy increases. The curve represent several peak because electron crossing

from the valence to conduction band. For zinc blende type structure the maximum

peak obtained in UV region at 4 eV. Optical conductivity begins to decrease and

reaches zero for higher energy values. According to the optical conductivity curve,

the absorbed light spent conductivity in the ultraviolet range.

3.5.3 Refractive index and absorption coefficient

The refractive index is the measure of bending of a light ray when passing from

one medium to another medium. It describes the optical properties of any given

material. The refractive index of the material, gives how much a path of light is

bent when it enters that material. Figure 3.7(e) shows refractive index vs energy

plot. The refractive index is inversely related to bandgap, if refractive index increases

corresponding bandgap decreases. Refractive index is maximum in infra-red region

for rock salt type structure at the energy range 1 eV compared with zinc blende type

structure. It is clearly seen that the refractive index has high value in low energy

limit.
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Figure 3.7: Calculated e) refractive index and f) absorption coefficient of TbP
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When the photon energy (hν) of the incident beam is greater than the energy band

gap (Eg), then absorption is produced. The form of the spectral components of the

absorption coefficient by using PBE approch is plotted in Figure 3.7(b) in the energy

range from 0 to 12 eV. From the characteristics of the curves, there is a consider-

able quantity of absorption occuring between 4 eV and 15 eV corresponding to the

ultraviolet region. The zero absorption coefficient for the compound is remarked for

photons possessing energies below the energy band gap in the infra-red region. The

results of the absorption coefficient shows that this compound having the properties

of good absorber.
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Chapter 4

Conclusions

We studied the electronic, magnetic and optical properties of TbP by using density

functional theory (DFT) and the PBE approximation approach. For ZB structure of

TbP gives bandgap only for up spin that behaves as semiconductor while in down-

spin channel there is no bandgap and behaves as metal. As a result, the TbP system

behaves as half metal. The magnetic moment of TbP for spin polarization calcu-

lation is very high nearly 6 µB for (ZB ferromagnetic structure type) compared to

RS type structure. The real and imaginary dielectric functions, optical absorptivity,

conductivity, reflectivity, refractive index are also calculated for the system.
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List of Abbreviations

BH : Born-Huang

BO : Born-Oppenheimer

BZ : Brillouin Zone

DFT : Density Functional Theory

DOS : Density of States

FP-LAPW : Full Potential Linearized Augmented Plane

GGA : Generalized Gradient Approximation

HEMT : High-Electron-Mobility-Transistor

HF : Hartree-Fock

HK : Hohenberg-Kohn

KS : Kohn-Sham

LDA : Local Density Approximation

MOSCAP : Metal-Oxide-Semiconductor Capacitor

PDOS : Partial Density of States

RHF : Restricted Hartree-Fock

RS : Rock Salt

TF : Thomas-Fermi

UHF : Unrestricted Hartree-Fock

XC : Exchange Correlation

ZB : Zinc Blende
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