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Abstract

This study investigates the electronic, magnetic, and optical characteristics of LaP

using the fully-potential linearized augmented plane wave technique (FP-LAPW)

based on density functional theory (DFT). The rock-salt (RS) and zinc-blende (ZB)

type structures are studied using the GGA and mBJ approaches. The calculated

findings suggest that the indirect bandgap of LaP for ferromagnetic (FM) ZB type

structures is 2.259 eV. LaP exhibits completely semiconducting behavior when stud-

ied for mBJ potential rather than GGA potential. According to the calculated op-

tical properties such as dielectric function, refractive index, optical reflection, and

optical conductivity, LaP is a promising candidate for optoelectronic applications.
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Chapter 1

Introduction

The significance of rare-earth pnictides is growing faster as a result of their intricate

structural, magnetic, and electronic properties [1]. They also exhibit intriguing semi-

conducting characteristics that are employed in a variety of real-world situations,

including non-linear optics, electro-optical components, grinding alloys, composite

lasers, and phosphor lasers [2]. Finding alternate sources of element recovery is nec-

essary due to the element’s continually increasing demand [3,4]. Here, the first ele-

ment of the lanthanide series coupled with the phosphorus combination, lanthanum-

phosphide, is examined to see if it may be utilized for optoelectronic devices and

to assess its potential in the future. Early research on the rare earth element GdP

shows that it has semiconducting and spintronic characteristics [5]. Studying the

electronic band structure and magnetic and optical characteristics of LaP would

be fascinating because the majority of the rare earth pnictides investigated in ear-

lier research show potential semiconducting activity [6, 7]. Most material qualities

are governed by their electrical structure. Density Functional Theory (DFT) has

been the standard computation technique in solid state physics over the last four

decades [8]. The density distribution, n(r), is the key variable in DFT, and it only

depends on three coordinates, where N is the number of particles [9]. Densities, spin

densities, ground state energies, and associated quantities like as lattice structures
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Introduction

and constants can be calculated without using parameters in DFT [10]. All com-

plexity of the many-electron system are incorporated in the exchange-correlation

(XC) functional in Kohn-Sham DFT [11]. Numerous solid-state features may be

accurately predicted by using the traditional semilocal approximations to the XC

functionals [12]. The full potential linearized augmented plane waves (FP-LAPW)

approach, as used in the WIEK2k code, and the modified Becke Johnson (mBJ)

method both achieve average accuracy even better than the GGA potential, which

has been employed in this computation [13]. We calculated ZB and RS type struc-

tures both ferromagnetically and non-magnetically, and we found that the ferromag-

netic computation of ZB type structures has more intriguing electrical and optical

features.

Spintronics is the study of inherent spin and the magnetic moment of electron as-

sociated with them [14,15]. Our LaP-based computing has a number of noteworthy

properties, including semiconducting behavior for its ferromagnetic ordering. Rare-

earth elements have become crucial parts of the periodic table because to their

ubiquitous usage in spintronic applications [16]. Based on this computation, we can

perform more intriguing future calculations that can broaden the spintronic fields.

This work is structured as follows: In Chapter 1, an introduction of quantum me-

chanical theory related to condensed matter physics will be offered to highlight the

issue to be solved, namely, solving the many-body Schrödinger equation. In Chap-

ter 2, DFT will be introduced as a theoretical method for tackling this problem.

The exchange-correlation energy functional used in computations inside DFT will

be described. In Chapter 3, we shall demonstrate the explanations and interpre-

tations of our results. In Chapter 4, we will analyze our system’s conclusion and

probable consequences.
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Chapter 2

Theoretical background

Science that studies how matter and light behave on an atomic and subatomic scale

is known as quantum mechanics. It makes an effort to explain and describe the

characteristics of molecules, atoms, and their building blocks, including electrons,

protons, neutrons, and other less familiar particles like quarks and gluons. The

quanta of electromagnetic energy, the uncertainty principle, the Pauli exclusion

principle, and the wave theory of matter particles are the four main concepts of

quantum mechanics that have been empirically demonstrated to be relevant to the

behavior of nuclear particles at close ranges.

2.1 Schrödinger equation

In 1926, Erwin Schrödinger attempted to characterize so-called “matter waves” by

using de Broglie’s connections to describe hypothetical plane waves, which resulted

in the most generic version of the famous equation named after him, the time-

dependent Schrödinger equation. The Schrödinger equation is used in quantum

physics to describe the motion and behavior of systems at the atomic and subatomic

levels, and it employs a quantity known as the wave function, which in turn offers

information on the system’s behavior [17]. For example, if we square the wave
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function, we get the probability distribution of the system, which tells us how likely

it is that we will locate the system, say an electron, at some given position in space.

Understanding how an electron behaves in a nucleus is based on the idea of energy

conservation (Kinetic Energy + Potential Energy = Total Energy).

The Schrödinger equation must be solved to determine the values of wave functions.

It can be written in full form as:

− ~2

2m

d2ψ(x)

dx2
+ U(x)ψ(x) = Eψ(x) (2.1)

where m is the electron mass of the system, ψ is the wave function of the system,

V is the potential energy of the system, E is the energy eigenvalue of the system.

This equation plays a central role in non-relativistic quantum mechanics. For N

particles in three dimension the Hamiltonian is,

Ĥ =
N∑
i

p̂2i
2mi

+ V (~r1, ~r2, ..., ~rN , t) = −~2

2

N∑
i=1

1

mi

+ V (~r1, ~r2, ..., ~rN , t) (2.2)

The corresponding Schrödinger equation can be written as,

i~
∂

∂t
Ψ(~r1, ~r2, ..., ~rN , t) = [−~2

2

N∑
i=1

1

mi

~∇2 + V (~r1, ~r2, ..., ~rN , t)]Ψ(~r1, ~r2, ..., ~rN , t)

(2.3)

This is the time-dependent Schrödinger equation for many-body system. In this

report, from now on only non-relativistic cases are considered. When the Hamil-

tonian has no time dependence, the time-independent Schrödinger equation is ob-

tained. Not only is the time-independent Schrödinger equation simpler to handle,

but understanding its solutions also gives key insight into how to manage the related

time-dependent equation [18]. In this case the potential does not depend on time,

like as V (~r1, ~r2, ..., ~rN , t). So, the Hamiltonian can be written as,

Ĥ = − ~2

2m
~∇2 + V (~r) (2.4)

The strategy of variable separation yields the time-independent equation. The spa-
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tial and temporal part of the wave function can be separated by this way,

Ψ(~r1, ~r2, ..., ~rN , t) = Ψ(~r1, ~r2, ..., ~rN)τ(t) = Ψ(~r1, ~r2, ..., ~rN)e−iωt (2.5)

So, the time-independent Schrödinger equation for many-body system can be written

as,

EΨ(~r1, ~r2, ..., ~rN) = [−~2

2

N∑
i=1

1

mi

∇2
i + V (~r1, ~r2, ..., ~rN)]Ψ(~r1, ~r2, ..., ~rN) (2.6)

The general eigenvalue equation becomes as,

EΨ(~r1, ~r2, ..., ~rN) = ĤΨ(~r1, ~r2, ..., ~rN) (2.7)

2.2 The wave function

In quantum physics, a wave function is a variable quantity that mathematically

characterizes the wave properties of a particle. The value of a particle’s wave func-

tion at a given place in space and time is connected to the probability of the particle

being there at the moment. Wave function, denoted by the Greek symbol ψ, can be

conceived of as an expression for the amplitude of the particle wave (or de Broglie

wave), though amplitude has no physical importance for such waves [19]. However,

the square of the wave function, ψ2, has physical significance: the chance of discov-

ering the particle described by a certain wave function at a given position and time

is proportional to the value of ψ2.

|Ψ(~r1, ~r2, ..., ~rN)|2d~r1, d~r2, ..., d~rN . (2.8)

Equation (2.8) describes the probability that particles 1, 2, ....., N are located simul-

taneously in the corresponding volume element d~r1, d~r2, ..., d~rN . If the positions of

two particles are exchanged the overall probability density cannot depend on such
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an exchange, i.e.

|Ψ(~r1, ~r2, ..., ~ri, ~rj, ..., ~rN)|2 = |Ψ(~r1, ~r2, ..., ~rj, ~ri, ..., ~rN)|2 (2.9)

According to the probability interpretation, the integral of the probability density

across all degrees of freedom in the system must equal to 1. This general requirement

that a wave function must satisfy is called the normalization condition. Which is,

∫
d~r1

∫
d~r2...

∫
d~rN |Ψ(~r1, ~r2, ..., ~rN)|2 = 1 (2.10)

A physical acceptable wave function also requires this criterion. The wave function

must be square-integrable and continuous across the whole spatial range. We may

compute the expectation values of operators using a wave function, which also com-

putes the expectation value of the appropriate observable for that wave function.

For an observable O(~r1, ~r2, ..., ~rN) written as,

O = 〈O〉 =

∫
d~r1

∫
d~r2...

∫
d~rNΨ∗(~r1, ~r2, ..., ~rN)ÔΨ(~r1, ~r2, ..., ~rN) (2.11)

2.3 The Born-Oppenheimer (BO) approximation

The electrons in a molecule are characterized using the BO approximation, which

ignores the mobility of the atomic nuclei [20]. It is based on the fact that the mass

of a molecule’s nucleus is far bigger than the mass of an electron (more than 1000

times) [21]. The BO approximation assumes that the molecular wavefunction can

be written in the form:

ψtotal = ψelectronicψvibrationψrotation (2.12)

Therefore that the energies due to each type of motion are additive as,

Etotal = Eelectronic + Evibrational + Erotational (2.13)

6
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As a result, the many-body issue is reduced to the simpler problem of electrons

moving in an external potential, such as that created by positively charged nuclei.

The Schrödinger equation for this system is then

T̂ψ + V̂ ψ = −i~∂ψ(x, t)

∂t
(2.14)

where ψ is the many-electron wavefunction. In electronic structure calculations,

this is the most important object to consider because it holds all of the information

about the system of electrons. A probability amplitude for discovering a system of

electrons in a given configuration is provided by this formula,

ψ = ψ(r1, r2, ...rN) (2.15)

where the rn are the coordinates of the electrons. Again, spin is included in the

coordinates rn, so that r = (x, y, z, σ) where σ is the spin coordinate and can take

the values of (↑ spin-up) or (↓ spin-down). T̂ is now the many-electron kinetic energy

operator, acting on as

T̂ψ = −1

2
52 rnψ (2.16)

52rn is the many-electron potential operator, which acts on ψ as

V̂ ψ = −1

2

(∑
n

52
n6=m |

1

rn −mn

| +vext(rn)

)
ψ (2.17)

where Vext is the external potential in which the electrons are moving. For the

system of electrons and nuclei is given by,

Vext(r) = −
∑
n,m

| Zlm
rn −Rln

| (2.18)

It results in the simple way for handling molecules. Based on the fact that nuclei are

thousands of times heavier than electrons, the BO theory was developed. The mass

of a proton is around 2000 times greater than that of an electron. The electrons

can be thought of dynamically as particles that drag along with the nuclei without
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needing a limited amount of time to relax, or adiabatically following the nuclear

motion. The many-electron Schrödinger equation must be solved in accordance

with the limitations of normalization and exchange anti-symmetry. As a result of

normalization, any potential electron configuration is guaranteed to have the same

probability to 1.

ψ(r1, r2, ..rn, rm, rN) = −ψ(r1, r2, ..rn, rm, rN) (2.19)

Most of the time, we’re solely concerned with the electronic system’s ground state.

This is the lowest-energy solution to the Schrödinger equation for time-independent

many-electron systems.

T̂ψ + V̂ ψ = Eψ (2.20)

where E is the ground state energy of the system of electrons.

2.4 Hartee-Fock (HF) approximation

The HF approximation, which was recently developed, is a linear combination of

atomic orbitals that approximates one-electron wave functions. The wave function

is directly dependent on some conditions, such as: both it and its derivation must

be continuous in order to be used in HF calculations. There is an endless possibility

of identifying the particle at the site or places of discontinuity, which is impossible

in the event of a discontinuity [22]. The wave function must meet certain conditions

in order to be considered valid. Slater-type orbitals are atomic orbitals that have

a certain shape and are used in nuclear physics [23]. HF theory is one of the most

straightforward approximate theories for solving the many-body Hamiltonian that

is currently accessible. In this calculation, a basic approximation to the many-body

wavefunction is utilized, which asserts that the wavefunction is given by a single

8
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Slater determinant of N spin-orbitals, which is the case in reality.

ψ =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(x1) ψ2(x2) · · · ψN(xN)

ψ1(x1) ψ2(x2) · · · ψN(xN)
...

... · · · ...

ψ1(x1) ψ2(x1) · · · ψN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣
(2.21)

Here the variables x include the coordinates of space and spin. This simple ansatz for

the wavefunction ψ captures much of the physics required for accurate solutions of

the Hamiltonian. Most importantly, the wavefunction is antisymmetric with respect

to an interchange of any two electron positions. This property is required by the

Pauli exclusion principle, i.e

ψ(x1, x2, ..xi, ...xj, ...xN) = −ψ(x1, x2, ..xj, ...xi, ...xN) (2.22)

We now introduce a Lagrange multiplier ε to impose the condition that the ψ are

normalised, and minimise with respect to the ψ,

∂

∂ψ
[ 〈Ĥ〉 −

∑
j

ξi

∫
| ψj |2 dr] = 0 (2.23)

An enormous simplification of the expressions for the orbitals ψ results which reduce

to a set of one-electron equations of the form as,

−1

2

∑
n

52ψi(r) + Vion(r)ψi(r) + U(r)ψi(r) = εψi(r) (2.24)

where U(r) is a non-local potential and the local ionic potential is denoted by Vion(r).

The full HF equations are given by,

εiψi(r) =

(
−1

2
52 +Vion(r)

)
ψ(r) +

∑
j

∫
dr′
| ψj(r′) |2

| r − (r′) |
ψi(r) (2.25)

−
∑
j

δσiσj

∫
dr′

ψ∗j (r
′)ψi(r

′)

| r − (r′) |
ψj(r)

9
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The right-hand side of the equations is made up of four terms, as shown above. The

kinetic energy contribution and the electron-ion potential are the first and second

causes of the phenomenon. Lastly, the third component, often known as the Hartree

term, is simply the electrostatic potential resulting from the charge distribution of N

electrons. When j = I the word involves an unphysical self-interaction of electrons,

according to the way it is expressed. This term is terminated in the fourth term,

which is the exchange term. In our case, the inclusion of the Pauli principle as

well as the assumption of a determinantal form of the wavefunction result in the

exchange term. The impact of exchange is that electrons with similar spins avoid

colliding with one another.

2.4.1 Limitation of HF approach

Due to the assumption of a single-determinant form for the wavefunction, HF theory

does not take into account electron correlation [24]. The electrons are subjected to an

average non-local potential emanating from the other electrons, which might result

in a poor description of the electronic structure when the potential is measured. HF

theory is qualitatively true in many materials and compounds, but it is inadequately

accurate to make precise quantitative predictions in many others, including metals.

We will achieve a stable point in energy after many cycles of SCF if we utilize

the HF approach and compute the energy (via SCF), which will be higher than

the exact energy. Because we don’t account for all electron interactions. This

energy represents the upper bound of the molecule’s ground state energy. We only

investigate some electron correlations in HF. Other correlations, such as Coulombic

correlations are ignored by this method since the two electron section of the Fock

matrix only contains an average representation of the electron interactions. This is

one of the main reasons why HF theory is not widely accepted among theorists [25].

It produces results that are quite close to the real thing. MP2, DFT and linked

cluster methods are examples of higher theories. Among theorists, CCSD(T) is

regarded as the gold standard. The main contribition to the correlation energy

arises from the mean field approximation used in HF-method. That means one

electron moves in the average field of the other ones, an approach which completely
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neglects the intrinsic correlation of the electron movements.

2.5 Electron density

Emission spectra, or electron density, is a measure of how likely it is to detect an

electron in a certain position around an object [26]. A further assertion of quantum

physics is the existence of electrons as stationary waves, or clouds of negative charge

that can be detected. According to this viewpoint, the electron density of a cloud

is a quantity that tells us how much charge is;

ψ ⇐⇒ ψ2 = ρ (2.26)

there at each point in the cloud.

2.6 Thomas-Fermi model

One of the first tractable techniques for solving the many-electron problem was

proposed by Thomas and Fermi. In this model the electron density n(r) is the

central variable rather than the wavefunction, and the total energy of a system

is written as a functional ETF [n(r)] where square brackets are used to enclose the

argument of the functional, which in this case is the density [27]. The Thomas-Fermi

energy functional is composed of three terms,

ETF [n(r)] = Ak

∫
n(r)5/3dr + Vext(r)dr +

1

2

∫ ∫
n(r)n(r)

′

| r − (r)
′ |
drdr

′
(2.27)

T TF [n(r)] =

∫
t0[n(r)]dr (2.28)

For starters, we have the kinetic energy of a non-interacting gas of electrons. This

form is obtained by integrating the kinetic energy density of a homogeneous electron

gas t0[n(r)] which is obtained by summing all of the free-electron energy states
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ε=k2/2 up to the Fermi wave vector KF = [3π2n(r)]1/3.

t0[n(r)] =
2

(2π)3

∫
k2

2
nkdk =

1

(2π)2

∫ kF

0

k4dk (2.29)

nk is the density of allowed states in reciprocal-space. This leads to the form given

in with coefficient Ak = (3π2)2/3. The power-law dependence on the density can also

be established on dimensional grounds. The second term is the classical electrostatic

energy of attraction between the nuclei and the electrons, where Vext(r) is the static

Coulomb potential arising from the nuclei [28].

Finally, the third term in represents the electron-electron interactions of the sys-

tem, and in this case is approximated by the classical Coulomb repulsion between

electrons, known as the Hartree energy.

vext(r) = −
M∑
j=1

Zj
| r −Rj |

(2.30)

δ([F (f)]− µC[f ]) = 0 (2.31)

The minimisation of a functional F [f ], subject to the constraint C[f ] leads to the

following stationary condition, where ν is a constant known as the Lagrange multi-

plier. Minimising this leads to the solution of the corresponding Euler equation,

δ([F (f)]

δf
− µδ([C(f)]

δf
= 0 (2.32)

Applying this method leads to the stationary condition,

δ[ETF [n(r)]− µ(

∫
n(r)dr −N)] = 0 (2.33)

which yields the so-called Thomas-Fermi equations. The Thomas-Fermi theory has

several problems, the most significant of which is that it fails to predict atom bond-

ing, preventing molecules and solids from forming. The most common source of
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error is an incorrect approximation of kinetic energy,

5

3
Akn(r)2/3 + Vext(r) +

∫
n(r)

′

| r − (r)
′ |
− µ = 0 (2.34)

Because kinetic energy makes up such a large part of a system’s overall energy, even

tiny mistakes can be deadly [29]. Another issue is the oversimplification of electron-

electron interactions, which are dealt with in a traditional manner and hence fail to

account for quantum phenomena such as the exchange interaction.

2.7 Hohenberg-Kohn theorems

Basically, any system that involves electrons moving under the influence of an ex-

ternal potential can benefit from the Hohenberg-Kohn theorem. Simply, they are as

follows:

2.7.1 Theorem 1

The external potential Vext(r), and hence the total energy, is a unique functional of

the electron density n(r) [30].

The energy functional E[n(r)] alluded to in the first Hohenberg-Kohn theorem can

be written in terms of the external potential Vext(r) in the following way,

E[n(r)] =

∫
n(r)Vext(r)dr + F [n(r)] (2.35)

where F [n(r)] is an unknown, but otherwise universal functional of the electron

density n(r) only. Correspondingly, a Hamiltonian for the system can be written

such that the electron wavefunction ψ that minimises the expectation value gives

the groundstate energy (assuming a non-degenerate groundstate),

E[n(r)] = 〈ψ | Ĥ | ψ〉 (2.36)
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The Hamiltonian can be written as,

Ĥ = F̂ + V̂ext (2.37)

where F̂ is the electronic Hamiltonian consisting of a kinetic energy operator T̂ and

an interaction operator V̂ ee,

F̂ = T̂ + V̂ee (2.38)

The electron operator F̂ is the same for all N -electron systems, so Ĥ is completely

defined by the number of electrons N , and the external potential Vext(r) [31].

The proof of the first theorem is remarkably simple and proceeds by reduction. Let

there be two different external potentials, Vext,1(r) and Vext,2(r), that give rise to

the same density n0(r). The associated Hamiltonians Ĥ1 and Ĥ2 , will therefore

have different groundstate wavefunctions ψ1 and ψ2, that each yield n0(r). Using

the variational principle together with yields,

E0
1 < 〈ψ2 | Ĥ | ψ2〉+ 〈ψ2 | Ĥ1 − Ĥ2 | ψ2〉 = E0

2 +

∫
n0(r)[Vext,1(r) (2.39)

−Vext,2(r)]dr

where F 0
1 and F 0

2 are the groundstate energies of Ĥ1 and Ĥ2 respectively. It is at

this point that the Hohenberg-Kohn theorems, and therefore DFT, apply rigorously

to the groundstate only. An equivalent expression holds when the subscripts are

interchanged. Therefore adding the interchanged inequality leads to the result:

E0
1 + E0

2 < E0
2 + E0

1 (2.40)

which is a contradiction, and as a result the groundstate density uniquely determines

the external potential , to within an additive constant. Stated simply, the electrons

determine the positions of the nuclei in a system, and also all groundstate electronic

properties, because as mentioned earlier, Vext(r) and N completely define Ĥ.
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2.7.2 Theorem 2

Obtaining the groundstate energy can be done in a variety of ways: The exact

groundstate density is the density that has the least amount of total energy [32]. The

proof of the second theorem is also straightforward: as just shown, n(r) determines

Vext(r), and determine Ĥ and therefore ψ. This ultimately means ψ is a functional

of n(r), and so the expectation value of F̂ is also a functional of n(r) , i.e.

F [n(r)] = 〈ψ | Ĥ | ψ〉 (2.41)

A density that is the ground-state of some external potential is known as ν-representable.

Following from this, a ν-representable energy functional Ev[n(r)] can be defined in

which the external potential ν(r) is;

Ev[n
′(r)] =

∫
n′(r)νext(r)dr + F [n′(r)] (2.42)

unrelated to another density n′(r).

And the variational principle asserts,

〈ψ′ | F̂ | ψ′〉+ 〈ψ′ | ˆVext | ψ
′〉 > 〈ψ′ | F̂ | ψ′〉+ 〈ψ | ˆVext | ψ〉 (2.43)

∫
n

′
(r)νextdr + F [n

′
(r)] > n(r)vext(r)dr + F [n(r)]dr (2.44)

where the wavefunction ψ is associated with the correct ground state. This leads to,

and so the variational principle of the second Hohenberg-Kohn theorem is obtained.

However, despite the fact that the Hohenberg-Kohn theorems are exceedingly power-

ful, they do not provide a practical method of determining the ground-state density

of a system. Just over a year after Hohenberg and Kohn’s foundational DFT publi-

cation, Kohn and Sham established a straightforward method for carrying out DFT
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computations that keeps the exact essence of DFT [33].

Ev[n
′
(r)] > Ev[n(r)] (2.45)

Hohenberg-theory Kohn’s demonstrates that the ground state density can be used

to compute the system’s attributes, but it does not provide a mechanism to find

the density. The Kohn-Sham equations propose a way to get there. Let us begin

by examining the ground state energy, which is represented as a function of charge

density.

E[ρ(r)] = T [ρ(r)] +

∫
ρ(r)ν(r)dr + Eee[ρ(r)] (2.46)

=
1

2

ρ(r)ρ(r)
′

| r − (r)
′ |
drdr

′
+ Exc[ρ(r)]

Three terms are used to describe the movement of electrons: kinetic energy, interac-

tion with the external potential, and ion-electron interaction. The electron-electron

electrostatic interaction is represented by the first term on the right hand side of

the equation, while the non-classical exchange-correlation energy is represented by

the second term [34].

2.8 Kohn-Sham equation

The KohnSham equations are named after Walter Kohn and Lu Jeu Sham, who

introduced the concept at the University of California, San Diego, in 1965. The

Kohn-Sham equations are a set of eigenvalue equations within DFT. Kohn-Sham

theory in particular has laid the groundwork for the application of DFT in compu-

tational chemistry. This theory is based on the idea that electron density is a perfect

predictor of ground state electrical energy. Kohn and Sham derived a set of single

particle by reintroducing wavefunctions ψi with where n is the number of electrons.

The kinetic energy is given by,

∫
ψ∗i (r)ψj(r)dr = δij (2.47)
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ρ(r) =
M∑
i=1

ψ∗i (r)ψi(r) (2.48)

T [ρ(r)] = − ~2

2m

n∑
i=1

〈ψi | 52 | ψi〉 (2.49)

If the wavefunctions are required to be orthonormal, i.e. then we can define a

functional of the wavefunctions,

Ω[ψi] = E[ρ(r)]−
∑
i

∑
j

ξij

∫
ψ∗i (r)ψ

∗
j (r)dr (2.50)

where ξij are Lagrange multipliers to ensure the wavefunctions are orthonormal.

Minimization of Ω[ψi] with respect to ψ∗(r) gives the Kohn-Sham equations

[− ~2

2m
52 +νeff (r)] = ξiψi(r) (2.51)

where νxc is the exchange-correlation potential given by,

νxc(r) =
∂Exc
∂ρ(r)

(2.52)

However, a nonlocal potential exists in the HF equations, which is in contradiction

to this.

2.9 Exchange-correlation functional

LDA is a single local exchange-correlation functional supported by CASTEP; GGA

is a set of three gradient-corrected exchange-correlation functionals; and a set of

nonlocal functionals for self-consistent total energy calculations are also supported.

When it comes to CASTEP, CA-PZ is the sole LDA function available [35]. In

comparison to LDA functionals, the GGA functionals offer a more comprehensive

picture of the electrical subsystem. By overbinding atoms, the LDA description

tends to overstate bond lengths and cell volume by a few percent, resulting in an

overestimation of the bulk modulus. While correcting this problem, GGA can lead
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to bonds that are slightly longer than they should be PBE is the default correlation

function for exchange rates [36]. Even though it may be used in bulk calculations,

it is recommended for studies of molecules interacting with metal surfaces. Nonlo-

cal functional RPBE, a refined version of the PBE functional, is designed to better

describe metallic surfaces. GGA lattice constants, crystal structures, and metal

surface energies have all been significantly improved over the PBE GGA. Improved

structural and energy properties for densely packed solids and their surfaces have

been achieved with the help of a new functional called PBEsol. CASTEP is capable

of handling functionals that are dependent on the kinetic energy density in addi-

tion to GGA functionals, which are dependent on the local density and its gradient,

among other things. As opposed to pure GGA functionals, meta-GGA functionals

are believed to be more precise and the cost of performing such computations is

much less expensive than the cost of performing nonlocal functionals. As a result

of the generalized Kohn-Sham approach , nonlocal exchange-correlation functionals

are produced, which are expected to improve the description of band gaps in insu-

lators and semiconductors as compared to LDA or GGA computations [37]. This

increased accuracy comes at the expense of longer calculations that take more time

to complete. Several approximations for nonlocal exchange-correlation functionals

are available: (i) HF, (ii) HF-LDA, (iii) sX, (iv) sX-LDA, (v) PBE, (vi) B3LYP, (vii)

HSE03, (viii) HSE06, (ix) PBE0, (x) B3LYP, and (xi) HSE06 are the functionals

most commonly used for testing against alternative HF methods for solids imple-

mentations. For the most part, DFT does not have a good handle on the functionals

for exchange and correlation. Approximations, on the other hand, allow for the pre-

cise determination of some physical quantities. One of the simplest approximations

is the LDA, where the functional depends simply on density at a given point.

ELDA
XC [n] =

∫
εXC(n)n(r)d3r (2.53)

Local spin density approximation is a simple extension of the LDA to add electron

spin:

ELDA
XC [n↑, n↓] =

∫
εXC(n↑, n↓)n(r)d3r (2.54)
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It is common in LDA for the exchange correlation energy to be divided into two com-

ponents: XC = X + C. The Dirac (or Slater) exchange takes the form X n1/3 for

the exchange portion. Correlation can, however, take many different mathematical

shapes. According to the results of jellium quantum Monte Carlo simulations, the

correlation energy density nC(m,m) may be accurately calculated. In addition, a

simple first-principles correlation functional has recently been presented. As a result,

both forms of Monte Carlo simulation are equally accurate [38]. The Kohn-Sham

density-functional scheme’s exchange-correlation potential is the difference between

the Fermi potential (an effective potential appearing in the one-electron Schrdinger

equation for the square root of the electron density) and the Pauli potential. The

Fermi potential can be estimated or modeled directly from the system’s interacting

two-electron reduced density matrix. The unified treatment of these three poten-

tials provides a practical method for obtaining accurate functional derivatives of

the exchange-correlation, Pauli kinetic, and Levy-Perdew-Sahni energy functionals

without having to deal with the functional differentiation and numerical difficulties

associated with other construction techniques. We create exchange-correlation func-

tionals by fitting the functional form to higher-level theory data (for example, wave

function method results for gas phase chemistry) and experimental benchmark data

for bulk cohesive and elastic characteristics, as well as surface chemistry.

Using the LDA, one assumes that the density is the same everywhere. As a re-

sult, the LDA tends to overestimate the correlation energy while underestimating

the exchange energy. Due to the exchange and correlation parts, the mistakes are

likely to compensate for each other. Because of the non-homogeneity of the genuine

electron density, it is usual to counteract this tendency by extending the gradient of

the density. This enables for adjustments based on density variations away from the

coordinate. Generalized gradient approximations (GGA) are a type of expansion

that takes the following form:

EGGA
XC [n↑, n↓] =

∫
εXC(n↑, n↓)n(r)d3r (2.55)

The latter (GGA) has shown excellent results in terms of molecular geometries and
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ground-state energies. As a natural progression from the GGA functionals, the new

meta-GGA functionals have the potential to be even more precise than the GGA

functionals themselves.

Initial guess n(r)

Calculate effective potential Veff (r) = Vext(r) + VHartee[n] + Vxc[n]

Solve KS equation [− ~2
2m
52 +Veff (r)]ψi(r) = εmeψi(r)

Calculate electron density n(r) =
∑N

i=1 ψ
∗
i (r)ψi(r)

Self-consistent? Go to first stage

Output quantities : Potential Energy, Static structure, Born effective charges, etc...

Stop

yes

no

The Laplacian (the second derivative of the electron density) is included in the

original Meta-GGA DFT functional, whereas GGA only includes the density and its

first derivative. TPSS and Minnesota Functionals are examples of functionals of this

type [39]. The density, gradient, and Laplacian (second derivative) of the density

all play a role in the expansion of these functionals. A component of the actual
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HF exchange energy can alleviate difficulties in expressing the energy’s exchange

portion. The term “hybrid functionals” is used to describe these kinds of functions.
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Chapter 3

Electronic, magnetic and optical

properties of LaP

Figure 3.1: Crystal structure of LaP (a) rock-salt type, (b) zinc-blende type obtained

with XCrySDen

Lanthanum phosphide is an inorganic compound of lanthanum and phosphorus

with the chemical formula LaP. Other names for this chemical include Phosphanyli-

dynelanthanum and Phosphanylidynelanthanum. It has a molar mass of 169.88 and

appear like a black crystal. It interacts with water and has a density of 5.2 g/cm3.

Its crystalline structure is made up of cubic forms. The chemical forms cubic black

crystals with cell parameters of a = 0.601 nm and a number of formulas per unit

cell of Z = 4. The crystals are highly unstable and decompose into the open air.
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Table 3.1: Equilibrium energy and lattice constant of LaP for NM and FM calculation

Compound Structure Calculation Lattice constant (Å) Equilibrium energy (Ry)

LaP

RS
NM 6.0590 -17679.76

FM 6.0580 -17679.76

ZB
NM 6.6291 -17679.69

FM 6.6294 -17679.69

3.1 Computational method

By first-principles resolving the Kohn-Sham equation, we analyzed the electronic,

magnetic, and optical characteristics of LaP within a self-consistent framework.

We employed PBE (Perdew Burke Ernzerhof) potential for structural optimization.

Electronic and optical computations were carried out using the WIEN2k code’s

modified Becke-Jonhson potential (mBJ) in order to acquire more precise findings.

The self-consistent full potential linearized augmented plane wave (FP-LAPW) ap-

proach was used for all computations. This approach divides the unit cell into two

regions: the interstitial area and the non-overlapping (muffin-tin) spheres. Within

the muffin-tin sphere (MT), the basic functions are extended into spherical harmonic

functions, and in the interstitial area, Fourier series are generated. Both the La and

P atoms’ MT sphere radii were chosen to be 2.3 a.u.

We performed volume optimization calculations for each potential in order to acquire

the optimal theoretical lattice parameters that provide the lowest energy value. This

computation was performed for both ferromagnetic and non-magnetic types. We

employed the Murnaghan equation of state for this purpose. We can determine

which structure of LaP is the most stable by displaying volume vs energy. This

stable structure serves as the foundation for calculations of future electronic and

magnetic properties.

Rare-earth LaP studies are typically done in the RS structure with space group Fm-

3m 225, with La atoms at (0, 0, 0) and P atoms at (1
2
, 1
2
, 1
2
). This is the most common

structure used in these studies. P occupies site (1
4
, 1
4
, 1
4
) in ZB structure (space group

216), while La atom occupies (0, 0, 0) site. An equilibrium lattice constant of 6.294
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Å was determined for LaP in the ferromagnetic state. The calculation were done

with RMT*kmax = 8.5, to attain energy eigen value convergence. The smallest radius

of muffin-tin (MT) spheres is RMT and the maximum value of the wave vector is

kmax. The irreducible Brillouin zone (BZ) of ZB structure has been decomposed into

a matrix of Monkhorst-Pack K-points. The iteration procedure is continued with

total energy and charge convergence to 0.00001Ry and 0.0001e respectively. The

largest possible vector in charge density Fourier expansion (Gmax ) has a magnitude

of twelve. There was a cutoff energy of -6 Ry that separated the valence electrons

from the core electrons. There are 10× 10× 10 K-points in the BZ that we used for

energy calculations, which is 1000 K-points in the total zone. It is required to use

denser K-meshes to calculate density of states and transport properties, therefore we

used 10000 K-points in the entire BZ. For magnetic and non-magnetic calculations

of RS type structure, the energy vs volume graph overlap with one another as there

values are closely related to each other. The same results also appear for ZB type

structure while we calcule energy vs volume for it’s magnetic and non-magnetic

phases.

3.2 Electronic and Magnetic Properties

In this section, we have examined the electronic characteristics of LaP by calculat-

ing the energy bandstructure, DOS, and charge distribution. We computed both

PDOS and DOS in order to better understand how these systems are bonded. This

bandgap significance states that the LaP compound is a semiconductor because of

the substantial bandgap between the conduction and valence bands.

3.2.1 Band structure for magnetic calculation

Analysis of major electronic features (band structure and DOS) is essential for gain-

ing a strong understanding of optical functions. Figure 3.2 depicts the analyzed

band configurations of LaP. The Fermi level (EF ) is shown at zero on the photon

energy scale, which ranges from -5 eV to + 5 eV for the sample. According to semi-

conductive theory, the material band structure near to the EF is a highly important
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Figure 3.2: Band structure of LaP in mBJ for both spin channel of (a,b) rock-salt type,

(c,d) zinc-blende type structure obtained with XCrySDen

criterion for learning about the material’s physical nature. As a result, we’ve shown

the band structure arrangement near the Fermi level. The calculation is done by

defining highly symmetric points on the edge of the BZ with sampling path of W -

L-Γ-X-W -K. We observed energy-band structures for the equilibrium geometry of

LaP along higher symmetry directions in the BZ. Figure 3.2 shows that for the both

spin channels of the RS type structure with an average energy band gap of 0.896

eV, the valence band maximum (VBM) is situated at the high symmetry point Γ

and the conduction band minimum (CBM) is positioned at the X in the BZ. The
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Figure 3.3: Band structure of LaP in mBJ for (a) rock-salt type, (b) zinc-blende type

structure obtained with XCrySDen

VBM is positioned at the high symmetry point W and the CBM is located at the

K in the BZ with an indirect band gap of 2.259 eV for the both spin channels of

the ZB type structure.

3.2.2 Band structure for non-magnetic calculation

In the RS type structure, the VBM is located at the high symmetry point Γ and the

CBM is located at the K in the BZ with an indirect band gap of 0.896 eV, whereas

in the ZB type structure, the VBM is located at the W and the CBM is located at

the K in the BZ with an indirect band gap of 2.258 eV which is shown in Figure

3.3. For all cases, f -La contributes the most in the conduction band, whereas p-P

contributes the most in the valence band.

As illustrated in Figures 3.4 and 3.5, the electronic properties of LaP are clearly

found by using the mBJ to compute the total and partial DOS inside the magnetic

phase chosen for spin-up and spin-down channel. The p orbitals of P provide a

significant contribution to the electronic states at the EF in the valence band of LaP

in both the spin up and spin down channels. In the same energy ranges where triply

degenerate d − t2g (dxy, dyz, dzx) states contribute most, a little contribution owing
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Table 3.2: Energy bandgap (in eV) of LaP in PBE and mBJ approaches

Compound Lattice type Method Calculation
Band gap (eV)

Spin up Spin down

LaP

RS

PBE
NM 0.346

FM 0 0

mBJ
NM 0.896

FM 0.897 0.895

ZB

PBE
NM 1.528

FM 1.531 1.530

mBJ
NM 2.258

FM 2.259 2.259
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Figure 3.4: Total DOS and PDOS of LaP with its orbital contribution in rock-salt for

both spin channel

to d-La orbitals upon hybridization is also expected. According to the results of the

mBJ method, the contribution of f -La states to the conduction band is dominating

in the energy range of 0.9 eV to 2 eV, whereas the contribution of p-P states to

the electronic band formation is dominant from -2 eV to energy 0 eV, for RS type

structure as shown in Figure 3.4. The contributions of the orbitals to the total DOS

for the valence and conduction bands of the ZB type structure are shown in Figure

3.5. Compared to an RS type structure, there is a significant bandgap of 2.259 eV

between the valence and conduction bands. While the p orbital’s contribution to

the conduction band is minimal, it is larger in the valence band. In the conduction

band for 2.8 eV, f -La locates the greatest peak.

Each iteration of the self-consistent cycle yields spin-up and spin-down densities, and
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Figure 3.5: Total DOS and PDOS of LaP with its orbital contribution in zinc-blende for

both spin channel

the difference or spin polarization, which is defined as the spin magnetic moment,

is determined. The employed convergence criteria of 10−4 on electron charge den-

sity guarantees that the resulting magnetic moments are optimized with the same

precision. We estimated individual atom magnetic moments, which are displayed

in Table 3.3, where we can also observe the contribution of each atoms in LaP.

P orbital has a positive integer in both PBE and mBJ potentials, while La has a

negative integer. LaP exhibits a zero magnetic moment, revealing its diamagnetic

properties. We utilized the same (RMT ) for all atoms in our computation. Accord-

ing to the Slater-Pauling rule, the total magnetic moment is Mt = Zt−8. Using the

Slater-Pauling rule, we find that LaP have magnetic moments of 0 µB.

Table 3.3: Total spin magnetic moment of LaP in GGA and mBJ approaches

Compound Structure Individual magnetic moment (µB)

LaP ZB

Site GGA mBJ

Intersititial -0.00069 -0.00054

La 0.00020 -0.00013

P 0.00056 0.00067

Total 0.00007 0.00000
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3.3 Optical Properties

The optical properties of a material are important to know how the materials re-

spond to the electromagnetic radiations. Examining LaP’s optical characteristics

can yield a slew of new optoelectronic uses. As LaP’s properties are so complex, we

calculated its dielectric function and absorption coefficient as well as electron energy

loss, reflection, refraction and optical conductivity.

3.3.1 Dielectric Function
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Figure 3.6: (a) Real part of dielectric function ε1(ω) and (b) Imaginary part of dielectric

function ε2(ω) as a function of energy for LaP with mBJLDA

Complex dielectric function is one of the best strategies to investigate the optical

properties of LaP. The dielectric function:

ε(ω) = ε1(ω) + iε2(ω) (3.1)

where ε1(ω) and ε2(ω) that are real and imaginary parts of the complex dielectric

function respectively . This dielectric functions can be used to describe the linear

response of the systems to electromagnetic radiations. The real ε1(ω) and imaginary

part ε2(ω) of dielectric constant as a function of energy were plotted in Figure 3.6

where energy plotted in the x-direction, and real and imaginary dielectric tensor

plotted in the y-direction.

As seen in Figure 3.6(a), the static value of the real part of dielectric constant de-

pending on and εx1
x(0) and εz2

z(0) are found at 13.7 and 7.1 eV respectively. Here
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maximum peaks are for 0.7 eV and 2.6 eV respectively and the minimum peaks are

4.8 eV and 7.2 eV for RS and ZB type of structure. The imaginary part of the

dielectric function shows that the absorption starts before 0.1 eV. Strong optical

transitions are caused by the greatest peak of the imaginary component of the di-

electric constant, which is positioned at approximately 3.1 eV and 3.2 eV for RS

type and ZB type structure respectively energy ranges for LaP in the energy spec-

trum. This dispersive conductivity of RS type LaP structure specializes extremely

good in infrared region wherein ZB type structure specializes extremely good in the

visible range. Thus it works effectively through the ultraviolet region.

3.3.2 Absorption Coefficient
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Figure 3.7: Calculated absorption coefficient as a function of energy for LaP with mB-

JLDA

It is essential to determine how far a material light of a particular wavelength can

penetrate before absorption. It is provided as follows,

α(ω)j =
2ω

c
[−Re(εcω)j +

|ε(ω)j|
2

]1/2 (3.2)

We have calculated the absorption coefficient of LaP, which has been plotted in

Figure 3.7. The horizontal line shows energy (eV), and the vertical line indicates the

absorption coefficient (104/cm). We can see, the value of the absorption coefficient
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promptly increases when the incident energy becomes higher. The maximum value

of RS type and ZB type structure is 6.7 eV and 11 eV respectively, in the ultraviolet

region. It shows both types of structure works inadequately in infrared region. This

analysis result indicates that the frequency area of 6 eV to 11 eV is the strongest

absorption zone for LaP. The value of absorption coefficient rapidly increases when

the incident photon energy became higher region and this is a typical characteristics

of a semiconductors.

3.3.3 Electron Energy Loss

Energy loss function is the energy lost by a fast-moving electron as it travel through

a substance. It’s a very significant phase since it offers information about the sample

or material’s structure and chemical composition. From the dielectric function, the

electronic energy loss function of material can be furthur to describe the energy

loss when electrons pass through a uniform dielectric. Electron loss (in arbitrarily

measured units) vs. Energy (eV) is shown graphically in Figure 3.8.
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Figure 3.8: Calculated electron energy loss as a function of energy for LaP with mBJLDA

Both ZB and RS structures have their largest peaks in the ultraviolet, and their

infrared performance is woefully lacking. This indicates that electrons in ZB struc-

tures don’t lose energy in the infrared, while they do lose energy in the same region

in RS structures.
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3.3.4 Optical Reflectivity
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Figure 3.9: Calculated optical reflectivity as a function of energy for LaP with mBJLDA

Material reflectivity is important in determining how much light a material can

reflect in relation to the amount of light it is exposed. Anti-reflective coatings are

applied to a variety of materials to reduce the amount of light that is reflected.

Figure 3.9 shows the relationship between optical reflectivity and energy in the

infrared, visible, and ultraviolet ranges, with slightly higher peaks in the UV region.

In the UV range, it appears that reflection is most effective. The lower reflectivity

of LaP reveals that it is optical transparent in the photon energy range of 5 eV to

13.5 eV. Furthermore, there is a peak of reflectivity in the photon energy of 5 eV

and 9 eV respectively for RS and ZB type structure.

3.3.5 Refractive Index

Another important physical quantity that describes a material’s optical property

is its refractive index (η). The refractive index of a material is very useful optical

parameter to determine the propagation of light through the optical medium. The

refractive index and the bandgap are inversely connected; as the refractive index

rises, the bandgap falls, and vice versa. We have plotted refractive index vs Energy in

Figure 3.10. Refractive index decreases steadily from the infrared to the ultraviolet,

as depicted in the image. Refraction indices of RS and ZB types peak at 0.7 eV and
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Figure 3.10: Calculated refractive index (η) as a function of energy for LaP with mB-

JLDA

2.2 eV for these two materials, respectively.

3.3.6 Optical Conductivity
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Figure 3.11: Calculated optical conductivity as a function of energy for LaP with mB-

JLDA

The optical conductivity corresponds to the conduction of electrons produced when

a photon of a certain frequency is incident upon a material. The optical conductivity

along with it’s energy is depicted in Figure 3.11. The optical conductivity for both

type structures doesn’t hold same type pattern. The threshold optical conductivity
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differs for both of them. It’s energy peak becomes high when it is in ultra violet

region rather than infrared region. Thus we can conclude that both type of structure

are optically conductive at a high proton energy range.
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Chapter 4

Conclusion

We investigated the electronic, magnetic, and optical characteristics of LaP, a rare-

earth phosphide, using first-principles simulations. For both ZB and RS structures,

volume optimization reveals the surprising property that LaP performs significantly

better in the FM computation. In accordance with the anticipated electronic band

structure and DOS, FM calculation of ZB indicates better semiconducting behavior

of LaP with indirect band gap of 2.259 eV. Optical characteristics such as dielectric

constant, absorption coefficient, electron energy loss, optical reflectivity, refractive

index, and optical conductivity are studied upto the energy range of 13.5 eV. Ac-

cording to the calculated electronic and optical characteristics of this compound,

LaP is a promising choice for optoelectronic applications.

35



List of Abbreviations

DFT : Density Functional Theory

DOS : Density of States

GGA : Generalized Gradient Approximation

HK : Hohenberg-Kohn

KS : Kohn-Sham

LSDA : Local Spin Density Approximation

XC : Exchange Correlation

RS : Rock Salt

ZB : Zinc Blende

PBE : Perdew-Burke-Ernzerhof

mBJ : Modified Becke-Johnson

NM : Non Magnetic

FM : Ferromagnetic

GGA : Generalized Gradient Approximation

LDA : Local Density Approximation
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