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Abstract

The effects of Fe doping and vacancies on the electrical, magnetic, and op-

tical characteristics of graphene are investigated using density functional

theory calculations in this paper. The electronic density of states is used

to reveal the conductive behavior of various defective graphene. Defected

structures, on the other hand, have different magnetic and optical proper-

ties than pure structures. The static dielectric constant rises dramatically

in the presence of a defect and under parallel polarization of light, and

the greatest peak of Imaginary dielectric shifts red in comparison to pure

graphene.Furthermore, under the same conditions, the greatest absorption

peak broadens in the visible to infrared region, and the amplitude and

related energy of peaks shift to higher values in the EELS spectra. Further-

more, the results demonstrate that the red and blue shifts are represented

by the maximum values of refractive index and reflectivity spectra, which

grow fast. In general, substituting Fe for C has a greater impact on magnetic

and optical properties than C vacancies.
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Chapter 1

Introduction

In modern time, the new sector in electronics is spintronics which also known

as spin electronics. Transmitting more data with the less energy dealings

is the main purpose of spintronics. High transparency, extremely high mo-

bility, zero dark current when used as photosensitive devices and spin re-

laxation length more than 1.5 µm are the amazing properties of graphene.

So, now the researchers are doing more researches on graphene. Hence, at

the first search, graphene is a competent element for use in optoelectronic

applications kind of optical gas sensor, solar cells, LEDs, photodetectors.

Nevertheless, pure graphene has no magnetic properties. So, it is not suit-

able for spintronics. Consequently, accumulation of magnetic layer on the

graphene surface, creating defect in the crystal structure of graphene such

as vacancies and exchanging carbon atoms with the d-type transition met-

als are the better option to overcome this problem. The low concentration

of defects is a proper process that also remains the metallic behaviour of

graphene. Actually, the difference between spin-up and spin-down band gap

energy of transitional metal (Fe, Co and Ni) doped graphene enhances its

application in spintronic field. Moreover, the addition of Fe on graphene

layer with a low cost and environmental friendly behaviour can act as a pos-
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Introduction

sible pt-free alternative catalyst for fuel cells and highly stable absorbent.

Researchers have previously shown that Nitrogen oxides and H2CO gas sen-

sors can be made with Fe doped graphene.

Now, computers are an integral part in the world of science. It is used

for calculatory problems. When problems cannot be solved analytically,

computers and numerical methods are of diametrical importance. The field

of computational chemistry discuss about the calculatory determination of

energies, charge distribution, di- and multipoles as well as spectroscopic

quantities of molecules. Get inside into molecular processes observed in

research as well as in order to compute them is it’s goal. The fields of

molecular physics and solid state physics is associated with the determina-

tion of molecular and atomic properties.

The first steps to deal with the complex and analytically not accessible

many-body Schrödinger equation were achieved by Hartree and Fock, who

derived a set of self-consistant, wave function based equations which allowed

an iterative calculation of energies and other desired parameters [1]. We use

the Hartree-Fock method in nuclear physics and theoretical chemistry. The

mathod has its faults which will be discussed in this thesis. One of major

problems is high cost of computation time when large systems are executed,

which arises, among other things, from the dependency of the many-body

wave function on 3N spatial variables.

The use of less complex base variables may be a method for lower com-

putational cost of molecular calculations. Hohenberg and Kohn provided

the basis for a method in 1964. This method for the calculation of the elec-

tronic energy is rooted in DFT, which has allowed a certain improvement

in the computing probability of dynamics estimation in polymers and other

chemical systems. Actually, the spatial variables with the use of the DFT

are reduced from 3N to 3, with N corresponding to the number of electrons
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Introduction

in the system under exploration. On the basis of the Thomas-Fermi model,

DFT was first developted in the early 20th century and later formalized by

the Hohenberg-Kohn theorems [2]. In 1965 Kohn and Sham derived a set

of self-consistent, iteratively solvable equations which finally allowed to use

the up to that point only theoretical concept of Hohenberg and Kohn also in

actual computer simulations and this theory has established the foundation

for the use of DFT in computational chemistry [3]. At the principle of this

theory, ground state properties of a system can be completely determined

by electron density. Since electron density is a much less complex quantity

than the wave function, the computation times of DFT calculations are sig-

nificantly lower.

Nowadays, DFT is used to calculate the atomic structure, band structure,

density of state and other molecular properties of a many-body system.

The purpose of DFT is to design functionals which relate electron energy

to electron density function.
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Chapter 2

Basic Quantum Mechanics

2.1 Schrödingers groundbreaking equation

In 1926, Erwin Schrödinger’s attempt to describe the so-called ‘matter

waves’, where he expressed de Broglie’s hypothesis concerning the wave

behaviour of matter in a mathematical form to describe hypothetical plane

waves, which is called the time-dependent Schrödinger equation [4].

i~
∂

∂t
Ψ(~r, t) = ĤΨ(~r, t) (2.1)

Here, i is the square root of −1. And the function Ψ varies with time

and position. Since a complete relativistic formulation of a formula is not

practicable, Schrödinger himself postulated a non-relativistic approximation

which is used especially in quantum chemistry.

The Hamiltonian for a single particle is taken to be

Ĥ = T̂ + V̂ = − ~2

2m
~∇2 + V (~r, t) (2.2)

4



Basic Quantum Mechanics

The (non-relativistic) time-dependent single-particle Schrödinger equation

becomes,

i~
∂

∂t
Ψ(~r, t) =

[
− ~2

2m
~∇2 + V (~r, t)

]
Ψ(~r, t) (2.3)

Again, using the Hamiltonian for N particles in 3D space,

Ĥ =
N∑
i=1

p̂i
2

2mi

+ V (~r1, ~r2, . . . , ~rN , t) = −~2

2

N∑
i=1

1

mi

+ V (~r1, ~r2, . . . , ~rN , t)

(2.4)

The corresponding Schrödinger equation can be written as,

i~
∂

∂t
Ψ(~r1, ~r2, . . . , ~rN , t) =

[
−~2

2

N∑
i=1

1

mi

∇2
i+V (~r1, ~r2, . . . , ~rN , t)

]
Ψ(~r1, ~r2, . . . , ~rN , t)

(2.5)

2.2 Time-independent equation

In quantum mechanics, out of all operators, the Hamiltonian (energy oper-

ator) plays an important role because it describes how the system evolves

over time through Schrödinger equation. Here, this Schrödinger equation

indicates the time-independent potential V (~r1, ~r2, . . . , ~rN). And the solu-

tion of this equation represents standing waves which are called stationary

states.

The time-dependent Schrödinger equation for N particles is

EΨ(~r1, ~r2, . . . , ~rN , t) = ĤΨ(~r1, ~r2, . . . , ~rN , t) (2.6)

Using the method of separation of variables for separating the spatial and

the temporal part of the wave function to obtain the time-independent

Schrödinger equation [5],

Ψ(~r1, ~r2, . . . , ~rN , t) = ψ(~r1, ~r2, . . . , ~rN)τ(t) = ψ(~r1, ~r2, . . . , ~rN) · e−iωt (2.7)

5



Basic Quantum Mechanics

The general eigenvalue equation of time-independent Schrödinger equation

can be written as,

Eψ(~r1, ~r2, . . . , ~rN) = Ĥψ(~r1, ~r2, . . . , ~rN) (2.8)

The corresponding Schrödinger equation for many-body Hamiltonian be-

comes,

Eψ(~r1, ~r2, . . . , ~rN) =

[
− ~2

2

N∑
i=1

1

mi

∇2
i + V (~r1, ~r2, . . . , ~rN)

]
ψ(~r1, ~r2, . . . , ~rN)

(2.9)

2.3 The wave function

Material particles possess wave-like properties and electromagnetic radia-

tion shows particle-like behavior, which is called wave-particle duality. The

first and vital postulate of quantum mechanics is that the state of a par-

ticle is completely described by its wave function (time-dependent), which

contains all essential information about the particle’s state.

On account of simplicity, the discussion is confined to the time-independent

wave function. The wave function is represented by Ψ in quantum mechan-

ics, which has no physical interpretation. In 1926, Max Born published a

probability interpretation of the wave function, which is a major principle of

the Copenhagen interpretation of quantum mechanics, provides a physical

interpretation for the square of the absolute quantity of the wave function

as a probability density [6].

|ψ(~r1, ~r2, . . . , ~rN)|2d~r1d~r2 . . . d~rN (2.10)

The particles 1, 2, . . . , N are lying simultaneously in the corresponding vol-

ume element d~r1d~r2 . . . d~rN which is the probability that is described by

equation (2.10) [7]. If the positions of two particles are exchanged, the

6
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overall probability density cannot depend on such an exchange. That is,

|ψ(~r1, ~r2, . . . , ~ri, ~rj, . . . , ~rN)|2 = |ψ(~r1, ~r2, . . . , ~rj, ~ri, . . . , ~rN)|2 (2.11)

The symmetrical and anti-symmetrical wave functions are two possibilities

for the behavior of the wave function during a particle exchange. The sym-

metrical wave function does not change due to such an exchange, which

corresponds bosons (integer or zero spin). But the anti-symmetrical wave

function change itself sign that corresponds fermions (half-integer spin) [8].

Since electrons are fermions, the anti-symmetric fermion wave function can

be discussed in this thesis. The anti-symmetric fermion wave function fol-

lows the Pauli exclusion principle, which states that no two electrons can

occupy the same orbital.

Normalization of a wave function is another outcome of the probability inter-

pretation. Wave function of a particle must be normalized. The probability

of finding the particle somewhere in space is unity, which is normalization

condition for the wave function.

∫
d~r1

∫
d~r2 . . .

∫
d~rN |ψ(~r1, ~r2, . . . , ~rN)|2 = 1 (2.12)

Equation (2.12) has physical acceptance. Wave function must be continu-

ous and square-integrable. Any wave function which is not continuous and

square-integrable has no physical meaning in quantum mechanics [9].

Calculating the expectation values of operators with a wave function pro-

vides the expectation value of the corresponding observable for that wave

function, which is another essential property of the wave function [10]. For

an observable A(~r1, ~r2, ..., ~rN), this can be written as,

A = 〈A〉 =

∫
d~r1d~r2 . . .

∫
d~rNψ

∗(~r1, ~r2, . . . , ~rN)Âψ(~r1, ~r2, . . . , ~rN) (2.13)

7
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2.4 Atoms and Molecules

The single electron time-independent Schrödinger equation reads,

i~
∂

∂t
ψ(~r) =

[
− ~2

2m
~∇2 − e2

4πε0
· 1

|~r|

]
ψ(~r) (2.14)

Here, the electron mass me, the elementary charge e, the reduced plank

constant (Dirac constant) ~, and the vacuum permittivity fator 4πε0 [11].

The Schrödinger equation is simplified to,

Eψ(~r) =

[
− 1

2
~∇2 − 1

|~r|

]
ψ(~r) (2.15)

This type of Schrödinger equation is analytically solvable.

Again, the Schrödinger equation can be written as,

Eiψi(~r1, ~r2, . . . , ~rN , ~R1, ~R2, . . . , ~RM) = Ĥψ(~r1, ~r2, . . . , ~rN , ~R1, ~R2, . . . , ~RM)

(2.16)

Where, Hamilton operator Ĥ for a system composed of M nuclei and N

electrons in the absence of external magnetic and electric field.

The Hamiltonian corresponds to,

Ĥ = −1

2

N∑
i=1

∇2
i−

1

2

M∑
k=1

∇2
k−

N∑
i=1

M∑
k=1

Zk
rik

+
N∑
i=1

N∑
j>1

1

rij
+

M∑
k=1

M∑
l>k

ZkZl
Rkl

(2.17)

In equation (2.17), the nuclear mass is denoted by Mk in atomic unit, the

atomic numbers are denoted by Zk and Zl and rij = |~ri− ~rj|, rik = |~ri− ~Rk|

and Rkl = | ~Rk − ~Rl| describe the distances between the particles.

The first two term in equation (2.17) expresses the kinetic energy of elec-

tron and nuclei. The sequential three terms define the potential part of the

Hamiltonian and express the attractive electrostatic interaction between

the nuclei and the electrons and the repulsive potential due to the electron-

electron and nucleus-nucleus interaction, respectively [12].

8
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According to the Born-Oppenheimer approximation, the core movement has

no influence on electronic transitions. From equation (2.17) the so-called

electronic Hamiltonian gives,

Ĥel = −1

2

N∑
i=1

∇2
i −

N∑
i=1

M∑
k=1

Zk
rik

+
N∑
i=1

N∑
j>1

1

rij
(2.18)

= T̂ + Û + V̂ (2.19)

= T̂ + V̂tot (2.20)

In equation (2.19), the kinetic energy term T̂ and the electron-electron

repulsion Û do not depend on the nuclear coordinates Rkl. And the external

potential V̂ depends on the atomic system caused by the nucleus-electron

repulsion, where are no external magnetic or electric fields [10]. T̂ and V̂

only depend on the electron number N . The external potential is the next

step to determination of the wave functions.

2.5 The variational principle

If we can’t find a solution to the Schrödinger equation analytically, a recipe

known as the variational principle that is a specialized approach that may

be used to calculate the ground-state energy of a system. It is similar to

the least-action principle of classical mechanics because of corresponding to

the lowest energy of the system.

From the interest of the electric Schrödinger equation, we can set, Ĥ ≡ Ĥel,

E ≡ Eel. The expectation value of a particular observable represented by

the appropriate operator Â using any trial normalized wave function ψtrial

9
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can be written as,

〈Â〉 =

∫
d~r1

∫
d~r2 . . .

∫
d~rNψ

∗
trial(~r1, ~r2, . . . , ~rN)Âψtrial(~r1, ~r2, . . . , ~rN)

(2.21)

≡ 〈ψtrial|Â|ψtrial〉 (2.22)

where, the bra-ket notation of Dirac is introduced and ψ∗trial indicates the

complex conjugate of ψtrial.

Using the trial wave function (normalized), the energy as observable are

calculated as the expectation values of Hamilton operator, i.e.,

Etrial =

∫
d~r1

∫
d~r2 . . .

∫
d~rNψ

∗
trial(~r1, ~r2, . . . , ~rN)Ĥψtrial(~r1, ~r2, . . . , ~rN)

(2.23)

For ground-state energy,

E0 =

∫
d~r1

∫
d~r2 . . .

∫
d~rNψ

∗
0(~r1, ~r2, . . . , ~rN)Ĥψ0(~r1, ~r2, . . . , ~rN) (2.24)

The variational principle now states that the energy obtained by this trial

wave function will be an upper bound to the true energy of the ground

state [13]. If ψtrial and ψ0 are uniform, the equality will be maintained. i.e.,

〈ψtrial|Ĥ|ψtrial〉 = Etrial ≥ E0 = 〈ψ0|Ĥ|ψ0〉 (2.25)

Proof [13]: Since the eigenfunction ψi of the Hamiltonian Ĥ from a complete

set, we can express the normalized trial wave function ψtrial as a linear

combination of them.

ψtrial =
∑
i

λiψi (2.26)

Since ψtrial is normalized,

〈ψtrial|ψtrial〉 = 1 = 〈
∑
i

λiψi|
∑
j

λjψj〉 =
∑
i

∑
j

λ∗iλj〈ψi|ψj〉 =
∑
j

|λj|2

(2.27)

10
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Assume that, the eigenfunctions are orthogonal and normalized. From equa-

tion (2.25) and (2.27),

Etrial = 〈ψtrial|Ĥ|ψtrial〉 = 〈
∑
i

λiψi|Ĥ|
∑
j

λjψj〉 =
∑
j

Ej|λj|2 (2.28)

By the defination, the ground-state energy is the lowest eigenvalue (E0 ≤

Ei), it follows that

Etrial =
∑
j

Ej|λj|2 ≥ E0

∑
j

|λj|2 (2.29)

The main mathematical concept of density functional theory is used above,

which assigns a numerical number (Etrial) to a function (ψtrial) is called

functional. For finding the ground state energy and wave function, the

functional E[ψtrial] have to minimize by searching through all allowed N -

electron wave functions. Allowed wave function means this following wave

function must be continuous everywhere and be quadratic integrable. The

ground state energy can be written as,

E0 = min
ψ→N

E[ψ] = min
ψ→N
〈ψ|Ĥ|ψ〉 = min

ψ→N
〈ψ|T̂ + V̂ + Û |ψ〉 (2.30)

where, ψ → N represents all allowed N -electron wave function. The search

over all allowed N -electron wave function is apparently not possible due to

the large amount of possible wave function and huge calculation time. The

variational principle can be applied to subsets of all possible wave function,

which is done in the Hartree-Fock approximation.

2.6 The Hartree-Fock Approximation

In 1948, Hartree published an approximation method for finding the best

possible one-electron wave functions and two years later this method is de-

veloped by Fock. From above discussion, equation (2.30) can not be solved

by searching all allowed N -electron wave function. So, define a suitable sub-

11
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set is needed for it. In the Hartree-Fock process, physically good approxima-

tion to the complex many electron wave function is improved. It consists of

approximating the N -electron wave function by an anti-symmetric product

of N one-electron wave function, which is called spin-orbitals χi(~xi) [14].

This product of this type is called Slater-determinant φSD that specifies to

ψ0 ≈ φSD = (N !)−
1
2


χ1(~x1) χ2(~x1) . . . χN(~x1)

χ1(~x2) χ2(~x2) . . . χN(~x2)
...

...
. . .

...

χ1(~xN) χ2(~xN) . . . χN(~xN)

 (2.31)

Using a suitable short-hand notation, it can be written as

φSD =
1√
N !

det{χ1(~x1) χ2(~x2) . . . χN(~xN)} (2.32)

where, (N !)−
1
2 represents a normalization factor. In this slater determinant,

N electrons hold N spin orbitals (χ1, χ2, . . . , χN) without specifying which

electron is in which orbital.

The spin orbitals are composed of a spatial orbital φi(~r) and the spatial

parts of the spin orbitals have two spin functions that is α(s) and β(s).

χ(~x) = φ(~r)σ(s) (2.33)

where, σ = α, β. The essential property of the spin functions is that they

are orthonormal, that is 〈α|α〉 = 〈β|β〉 = 1 and 〈α|β〉 = 〈β|α〉 = 0. Two

spin functions satisfy the relation, i.e.

∫
χ∗i (~x)χj(~x)dx = 〈χi|χj〉 = δij (2.34)

Here, δij represents Kronecker delta which is equal to 1 for i = j and 0

for otherwise. Spin orbitals convey the usual physical interpretation that

|χ(~x)|2d~x indicates the probability of finding the electron with spin given

by σ within the volume element d~r.

12
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Now, the variational principle is applied due to find the best Slater deter-

minant, i.e.

E0 = min
φSD→N

E[φSD] = min
φSD→N

〈φSD|Ĥ|φSD〉 = min
φSD→N

〈φSD|T̂ + V̂ + Û |φSD〉

(2.35)

Using the slater determinant, the Hartree-Fock energy is simplified to

EHF = 〈φSD|Ĥ|φSD〉 = 〈φSD|T̂ + V̂ + Û |φSD〉 (2.36)

On account of simplicity, an elaborated derivation of the final expression for

the Hartree-Fock energy is eliminated. The final expression for the Hartree-

Fock energy can be written as

EHF = 〈φSD|Ĥ|φSD〉 =
N∑
i

(i|ĥ|i) +
1

2

N∑
i

N∑
j

[(ii|jj)− (ij|ji)] (2.37)

where,

(i|ĥ|i) =

∫
χ∗i (~xi)

[
− 1

2
~∇2
i −

M∑
k=1

Zk
rik

]
χi(~xi)d~xi (2.38)

(ii|jj) =

∫∫
|χi(~xi)|2

1

rij
|χj(~xj)|2d~xid~xj (2.39)

(ij|ji) =

∫∫
χi(~xi)χ

∗
j(~xi)

1

rij
χj(~xj)χ

∗
i (~xj)d~xid~xj (2.40)

The first term defines the contribution due to the kinetic energy and electron-

nucleus interaction, where ĥ indicates the single particle contribution of the

Hamiltonian. And the sequential two terms become electron-electron inter-

action, which are called coulomb and exchange integrals, respectively.

From equation (2.37), EHF is expressed as a functional of the spin orbitals,

EHF = E[χi]. Thus, the variational freedom in this expression leads to the

minimum energy. Moreover, the spin orbitals must be orthonormal during

minimization, which expresses as the Lagrangian multipliers εi in the re-

sulting equations. These equations are Hartree-Fock equations, which can
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be written as (for a detailed derivation follow Szabo and Ostland 1982)

f̂χi = λiχi i = 1, 2, . . . , N (2.41)

with

f̂i = −1

2
~∇2
i −

M∑
k=1

Zk
rik

+
N∑
i

[Ĵj(~xi)− K̂j(~xi)] = ĥi + v̂HF (i) (2.42)

where, f̂i indicates the Fock operator for the i-th electron. The first two

terms indicate the kinetic and potential energy due to electron-nucleus at-

traction. The last term V̂HF is the Hartee-Fock potential, which has two

components that is the coulomb operators Ĵj and the exchange operators

K̂j with the other j electrons. The two electron repulsion operator from

the original Hamiltonian is exchanged by a one-electron operator V̂HF that

represents the repulsion in average [7].

2.7 Failings of the Hartree-fock approach

An even and odd number of electrons can stay in the molecules. Com-

pounds with an even number of electrons and double occupied spatial or-

bitals φi that is species with singlet state, which are called closed-shell

systems. The compound is in a triplet or higher ground state in case the

number of electrons is odd and all of them are lying in single occupied or-

bitals. These systems are called open-shell systems. Two different schemes

of the Hartree-Fock method is applied to these two types of systems. The

restricted Hartree-Fock (RHF) model constructed with doubly occupied or-

bitals which minimize the total energy. On the other hand, electrons are

considered to be single in orbitals in the unrestricted HF (UHF) method.

Open-shell systems are also described by a RHF scheme where only the dou-

ble occupied orbitals are included which is then called a restricted open-shell

HF (ROHF). But the unrestricted HF (UHF) is much more popular than

ROHF [7].
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In order to find an appropriate result, sometimes the unrestricted scheme

is applied to the closed-shell systems. Such that, the description of the

separation of H2 that is the behaviour at large internuclear distance, where

one-electron must be situated at one hydrogen atom which can not be log-

ically calculated by the use of a system which places both electrons in the

same spatial orbitals. Consequently, the selection of method is always a

very important point in HF calculations.

A limiting factor is used to maintain the size of the investigated system.

For H2 system, Kohn consider a number of M = p5 with 3 ≤ p ≤ 10 param-

eters to find a proper result in the observation. Taking N = 100 electrons

for a system, we find,

M = p3N = 3300 to 10300 ≈ 10150 to 10300 (2.43)

In equation (2.43), at least 10150 dimention in a space exceeds the calcula-

tion possibilities for the minimization of the energy. So, the small number

of involved electrons is used to the HF method. Therefore, exponential wall

is taking the exponential factor in this limitation.

The Hartree-Fock limit is the absolute maximum accuracy which can get

from a Hartree-Fock calculation. According to the variational principle, the

Hartree-Fock energy (EHF ) is always larger than the exact ground state

energy (E0) whereas a many electron wave function can not be composed

entirely by a single basis set (Slater determinant). The difference between

these two energies is known as correlation energy and can be written as

EHF
corr = E0 − EHF (2.44)

The elimination of electron correlation (coulomb correlation) in the HF

method is at the root of the lack of HF wavefunction in describing the real
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atoms and molecules.

16



Chapter 3

Density functional theory

3.1 A new base variable : electron density

The wave function ψ, a general statement about the calculation of observ-

ables which contains all information has been provided in the section 2.3.

A similar approach is described in this section for a quantity calculation.

The electron density (for N electron) which gives probability interpretation

reads [7],

n(~r) = N
∑
s1

∫
d~x2 . . .

∫
d~xNψ

∗(~x1, ~x2, . . . , ~xN)ψ(~x1, ~x2, . . . , ~xN) (3.1)

In equation (3.1), the notation reputes a wave function dependent on spin

and spatial coordinates.

It should be noted that the multiple integral represents the probability that

a particular electron is found in the volume element dr1. The probability of

finding any electron at this position is N times the integral whereas electrons

are indistinguishable. The wave function ψ represents the arbitrary position

and spin in the state of the other (N − 1) electrons.

The electron density only dependent on spatial coordinates in case the spin
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coordinates are neglected.

n(~r) = N

∫
d~r2 . . .

∫
d~rNψ

∗(~r1, ~r2, . . . , ~rN)ψ(~r1, ~r2, . . . , ~rN) (3.2)

This can be obtained by X-ray diffraction. The electron density as vari-

able contains all essential information about the system before presenting a

scheme.

The electron density integrates to the total number of electron over the

spatial variables,

N =

∫
d~rN(~r) (3.3)

The electron density of a system of interacting electrons in some external

potential determines this potential uniquely, where uniquely means up to

an uninteresting additive constant.

3.2 The Hohenberg-Kohn theorems

In 1964, the Hohenberg-Kohn theorems published in the physical review (in

homogeneous electron gas) that was presented by Hohenberg and Kohn [7].

The modern day density functional theories were established in this thesis.

The proof runs as follows and is gained by reductio ad absurdum. This

discussion deals with non-degenerate ground state, which limitation doesn’t

affect the presented proof for the second theorem and can later be lifted as

well for the first theorem [15].

For the proof of Hohenberg and Kohn’s first theorem, the energy will be

used, which can be written as

E = 〈ψ|Ĥ|ψ〉 = 〈ψ|T̂ + V̂ + Û |ψ〉 =

∫
v(~r)n(~r)d~r + 〈ψ|T̂ + Û |ψ〉 (3.4)

Theorem 1 [16]: The external potential v(~r) is a unique functional of the

electron density n(~r), apart from a trivial additive constant, determined by

it.

18



Density functional theory

Proof [2]: It is considered that there remain two external potential v(~r) and

v′(~r) which differ by more than a constant but each giving the same elec-

tron density n(~r) associated with the corresponding non-degenerate ground

states of N particles. For different external potential, there must have to be

two different Hamiltonians, Ĥ = T̂ + V̂ee + V̂ and Ĥ ′ = T̂ + V̂ee + V̂ ′. These

two different Hamiltonians ground-state densities were the same although

the normalized wave functions ψ and ψ′ would be different. Ultimately, the

ground-state energies E0 and E ′0 associated with the wave function ψ and

ψ′, respectively.

Taking the two trial wave functions ψ and ψ′ for the Ĥ and Ĥ ′ problem,

respectively and consider that the other wave function is the ground state

wave function. This expression can be written as

E ′0 = 〈ψ′|Ĥ ′|ψ′〉 < 〈ψ|Ĥ ′|ψ〉 = 〈ψ|Ĥ+ V̂ ′− V̂ |ψ〉 = 〈ψ|Ĥ|ψ〉+ 〈ψ|V̂ ′− V̂ |ψ〉

(3.5)

and,

E0 = 〈ψ|Ĥ|ψ〉 < 〈ψ′|Ĥ|ψ′〉 = 〈ψ′|Ĥ ′+V̂−V̂ ′|ψ′〉 = 〈ψ′|Ĥ ′|ψ′〉+〈ψ′|V̂−V̂ ′|ψ′〉

(3.6)

By the use of equation (3.4), equation (3.5) and (3.6) yield,

E ′0 < E0 +

∫
[v′(~r)− v(~r)]n(~r)d~r (3.7)

and,

E0 < E ′0 +

∫
[v(~r)− v′(~r)]n(~r)d~r (3.8)

respectively.

After adding equations (3.7) and (3.8), the inequality,

E ′0 + E0 < E0 + E ′0 (3.9)
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is attained.

The first Hohenberg-Kohn theorem has several alternative proof, “strong

form” of the Hohenberg-Kohn theorem is one of them. Here, ∆v(~r) and

∆n(~r) denote the change in potential and electron density, respectively.

∫
∆v(~r)∆n(~r)d~r < 0 (3.10)

whereas equation (3.10) can be derived from the lines of the standard

Hohenberg-Kohn proof, it can also be derived perturbatively.

If ∆v(~r) 6= 0 clearly, we can’t have ∆n(~r) ≡ 0. This observation im-

plies the first Hohenberg-Kohn theorem. The importance of this proof also

provides a requirement about the sign of ∆n(~r) and ∆v(~r), i.e. if ∆v(~r) is

mostly positive, ∆n(~r) must be mostly negative, in order that their integral

over all space is negative. The ground state wave function is a unique func-

tional of the ground state electron density that is obtained from the first

Hohenberg-Kohn theorem.

ψ0(~r1, ~r2, . . . , ~rN) = ψ[n0(~r)] (3.11)

From equation (2.13), the expectation value of ground state for any observ-

able is a functional of n0(~r) too, which reads,

A0 = A[n0(~r)] = 〈ψ[n0(~r)]|Â|ψ[n0(~r)]〉 (3.12)

The expectation value of the Hamiltonian gives the ground state energy.

From equation (3.4), the ground state energy corresponding to an potential

v(~r) can be written as

Ev,0 = Ev[n0(~r)] = 〈ψ[n0(~r)|Ĥ|ψ[n0(~r)]〉 =

∫
v(~r)n0(~r)d~r+

〈ψ[n0(~r)|T̂ + Û |ψ[n0(~r)]〉
(3.13)
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From equation (3.13), the Hohenberg-Kohn functional FHK [n(~r)] are ob-

tained and then the energy functional Ev[n(~r)] can be denoted as

FHK [n(~r)] ≡ 〈ψ[n0(~r)]|T̂ + Û |ψ[n0(~r)]〉 (3.14)

Ev[n(~r)] ≡
∫
v(~r)n0(~r)d~r + FHK [n(~r)] (3.15)

where, FHK [n(~r)] is the sum of the functional for the kinetic energy and

functional for the electron-electron interaction, which represents the system

independent or universal part.

Theorem 2 [16]: The ground state energy can be obtained from the elec-

tron density variationally. The electron density which minimizes the total

energy, is therefore the true ground state density.

The constrained-search approach is a different way of looking at the vari-

ational search connected to the Hohenberg-Kohn second theorem which is

introduced by Levy and Lieb.

A trial density n′(~r) defines its own trial wave function whereas a unique

functional of the electron density is the wave function similar to equation.

According to the variational principle, the ground state energy can be de-

noted as

Ev,0 = min
ψ′
〈ψ′|Ĥ|ψ′〉 (3.16)

Proof: The minimization can be introduced in two stages in the principle.

In the first stage, fix a electron density n′(~r) and the class of trial functions

associated with the electron density can be denoted as ψ
′α
n′ . The constrained

energy minimum, with n′(~r) fixed, is represented as

Ev[n
′(~r)] ≡ min

α
〈ψ′α

n′ |Ĥ|ψ
′α
n′ 〉 =

∫
v(~r)n′(~r)d~r + F [n′(~r)] (3.17)
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where,

F [n′(~r)] ≡ min
α
〈ψ′α

n′ |T̂ + Û |ψ′α
n′ 〉 (3.18)

which is connected to the Hohenberg-Kohn functional in (3.13). The uni-

versal functional of the density n′(~r) is denoted as F [n′(~r)] which requires

no explicit knowledge of v(~r).

In the second stage, minimize equation (3.17) over all trial densities n′(~r),

Ev,0 = min
n′(~r)

Ev[n
′(~r)] = min

n′(~r)
{
∫
v(~r)n′(~r)d~r + F [n′(~r)]} (3.19)

In case of a non-degenerate ground state, the minimum is attained whether

n′(~r) is the ground state density, and for the degenerate ground state, if

n′(~r) is any one of the ground state densities. The second stage lifts the

constraint of a particular density and elaborates the search over all densities.

To summarize that the density functional theory gives a exact mathemat-

ical foundation for the use of the electron density as basis variable. In

spite of that the Hohenberg-Kohn theorem can not provide any support

for the calculation of molecular properties and any information about ap-

proximations for functionals like F [n(~r)]. The variational principle used in

the second theorem of Hohenberg and Kohn is more tricky than the varia-

tional principle used in Hartree-Fock method. The Hartree-Fock method is

the wave function based approach but the Hohenberg-Kohn theorem is the

electron density based approach. This functional gives more essential result.

The v-representability condition is stronger than theN -representability con-

dition. The density functional theory can be composed in a strategy that

only requires the density both in functionals and in variational principle to

satisfy a weaker condition, the N -representability condition. At last, it is

important that the possible ground state densities can fulfill the require-

ments, and do not correspond to a potential v(~r).
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3.3 The self-consistent Kohn-Sham equations

The mathematical foundation by Hohenberg and Kohn is appropriate, but

it is not very useful in actual calculation. The direct use of the second

Hohenberg-Kohn theorem for energy minimization is the only possibility

which is possible in general but has not proven itself practically. Quantities

can be measured for problems without an appropriate analytical solution is

the most wishful process which allows iteration.

The self-consistent single particle Hartree equations are an iterative ap-

proach which are wave function based as well as not directly related to the

work of Hohenberg and Kohn, but they have been proven very useful [10].

Hartree’s approximation proposes that every electron was considered as

moving in as effective single particle potential,

vH(~r) = − Z
|~r|

+

∫
n(~r′)

|~r − ~r′|
d~r′ (3.20)

where, the first term represents an attractive coulomb potential of a nu-

cleus with atomic number Z and the potential because of the average elec-

tron density distribution n(~r) is the second term. Thus the single particle

Schrödinger equation for each electron is[
− 1

2
~∇2 + vH(~r)

]
φj(~r) = εjφj(~r) j = 1, . . . , N (3.21)

where, j represents both spatial and spin quantum numbers.

The mean density can be written as

n(~r) =
M∑
j=1

|φj(~r)|2 (3.22)

where, according to the pauli exclusion principle, the sum runs over the M

lowest eigenvalues in the ground state. The self-consistent Hartree equa-

tions are defined in equation (3.20)-(3.22).
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An electron density n(~r) and a potential vH(~r) are constructed to solve these

self-consistent Hartree equations iteratively that is then used to solve (3.21)

for φj. The electron density n(~r) are recalculated from equation (3.22),

which should be the similar as the initial n(~r). This produce iterates untill

appropriate results are obtained. The task of extracting the Hartree equa-

tions from the Hohenberg-Kohn variational principle for the energy should

deliver even improvements as well as further, an alternative and finally prac-

tically useful formulation of the second theorem whereas the mathematical

foundation of Hohenberg and Kohn is formally appropriate. Hence, Kohn

and Sham discussed the DFT similar to Hartree’s approximation which has

the form of the Schrödinger equation for N non-interacting electrons mov-

ing in the external potential [2].

Remembering equation (3.17) and (3.18), the expression of Hohenberg-Kohn

variational principle can be written as

Ev(~r)[n
′(~r)] ≡

∫
v(~r)n′(~r)d~r + TS[n′(~r)] ≥ E (3.23)

where, n′(~r) and TS[n′(~r)] denote a v-representable density for non-interacting

electrons and the kinetic energy of the ground state of non-interacting elec-

trons with density distribution n′(~r), respectively.

Applying the Euler-Lagrange equation for the non-interacting case (3.23)

with the density n(~r),

δEv[n
′(~r)] ≡

∫
δn′(~r)

[
v(~r) +

δ

δn′(~r)
TS[n′(~r)]|n′(~r)=n(~r) − ε

]
d~r = 0 (3.24)

Here, n′(~r) represents the exact ground state density for v(~r) and ε is a

lagrangian multiplier to insure particle conservation.

To calculate the ground state energy and particle density of the non-interacting

single particles, the approximated Hartree-potential is exchanged by a sim-

ple external potential with the help of equation (3.20) to (3.22). For this
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system, the single particle Schrödinger equation can be written as

{−1

2
~∇2 + v(~r)− εj}φj(~r) = 0 (3.25)

Giving,

E =
N∑
j=1

εj (3.26)

and

n(~r) =
N∑
j=1

|φj(~r)|2 (3.27)

For the problem of interacting electrons, the single-particle was address-

ing approximately similar as Hartree equations. Kohn and Sham used the

functional F [n′(~r)] of equation (3.18) in the form,

F [n′(~r)] ≡ TS[n′(~r)] +
1

2

∫
[n′(~r)][n′(~r′)]

|~r − ~r′|
d~rd~r′ + Exc[n

′(~r)] (3.28)

where, TS[n′(~r)] denotes the kinetic energy functional for non-interacting

electrons and the second term is Hartree term that describes the electro-

static self-repulsion of the electron density. The last term is the so-called

exchange-correlation energy functional term which is defined by equation.

The Hohenberg-Kohn variational principle for interacting electrons can be

written in the form,

Ev(~r)[n
′(~r)] ≡

∫
v(~r)n′(~r)d~r+TS[n′(~r)]+

1

2

∫
[n′(~r)][n′(~r′)]

|~r − ~r′|
d~rd~r′+Exc[n

′(~r)]

(3.29)

Establishing the Euler-Lagrange equations for a given total number of elec-

tron has the form,

δEv[n
′(~r)] ≡

∫
δn′(~r)

[
veff (~r)+

δ

δn′(~r)
TS[n′(~r)]|n′(~r)=n(~r)−ε

]
d~r = 0 (3.30)

where,

veff (~r) ≡ v(~r) +

∫
[n(~r′)]

|~r − ~r′|
d~r′ + vxc(~r) (3.31)
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and,

vxc(~r) ≡
δ

δn′(~r)
Exc[n

′(~r)]|n′(~r)=n(~r) (3.32)

Now, this Euler-Lagrange equation is similar to the form of equation (3.24)

for non-interacting particles moving in an effective external potential veff (~r)

on behalf of v(~r). So, the minimizing density can be obtained in a method

same as the Hartree approach. The corresponding single-particle Schrödinger

equations should represent in the form,[
− 1

2
~∇2 + veff (~r)

]
φj(~r) = εjφj(~r) j = 1, . . . , N (3.33)

with

n(~r) =
N∑
j=1

|φj(~r)|2 (3.34)

which construct the self-consistent Kohn-Sham equations.

The ground state energy is denoted as

E =
∑
j

εj + Exc[n(~r)]−
∫
vxc(~r)n(~r)dv − 1

2

∫
[n(~r)][n(~r′)]

|~r − ~r′|
d~rd~r′ (3.35)

If both Exc[n(~r)] and vxc[n(~r)] are neglected together the Kohn-Sham equa-

tions lead back to the self-consistent Hartree equations.

The Kohn-Sham equations may be considered as the formal exactification

of Hartree approximation which resemble to the Hohenberg-Kohn theorems.

The appropriate solution is obtained in case the exact Exc[n(~r)] and vxc[n(~r)]

is used.

3.4 Generalized-gradient approximation (GGA)

The generalized-gradient approximation (GGA) for the exchange functional

in DFT in connection with correct expressions for the correlation functional
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Figure 3.1: Flow chart of a typical time-independent DFT calculation (From

Kamal Batra).

have led to enormous applications in which DFT compares quite good with

experiment and with the most correct ab initio calculations for properties

such as structure, bond energy and reaction activation energies. The GGA

explains a variety of processes proposed for functions that modify the be-

haviour at large gradients in such a process to preserve desired properties.

The exchange-correlation energy functional can be expressed as a general-

ized form of

EGGA
xc [n↑, n↓] =

∫
d3rn(~r)εxc(n

↑, n↓, |∇n↑|, |∇n↓|, . . .) (3.36)

≡
∫
d3rn(~r)εhomx (n)Fxc(n

↑, n↓, |∇n↑|, |∇n↓|, . . .) (3.37)

It is important to mention that Fxc is dimensionless and εhomx denotes the

exchange energy of the unpolarized gas.

For exchange, it is easy to show that there expresses a “spin scaling re-
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Figure 3.2: Exchange enhancement factor Fx vs the dimensionless density gra-

dient s for various GGAs.

lation”,

Ex[n
↑, n↓] =

1

2
[Ex[2n

↑] + Ex[2n
↓]], (3.38)

where Ex[n] denotes the exchange energy for an unpolarized system of den-

sity n(~r). The spin-unpolarized Fx(n, |∇n|) for exchange has taken to con-

sideration. Normally, the dimensionless reduced density gradients of mth

order can be represented as

sm =
|∇mn|

(2kF )mn
=

|∇mn|
2m(3π2)m/3(n)1+m/3

(3.39)

Here, sm is proportional to the mth order fractional variation in density

normalized to the average distance between electrons rs whereas kF =

3(2π/3)1/3r−1s .

The first gradient can be expressed as

s1 ≡ s =
|∇n|

(2kF )n
=

|∇rs|
2(2π/3)1/3rs

. (3.40)
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The lowest order terms in the expansion of Fx can be computed mathemat-

ically,

Fx = 1 +
10

81
s21 +

146

2025
s22 + . . . (3.41)

The factor Fx(n, s) can be explained by the three broadly used forms of

Becke (B88), Perdew and Wang (PW91) and Perdew, Burke and Enzerhof

(PBE). It is compared for these three approximations in fig (3.2). A better

result attained by employing other functionals can be appreciated from the

behaviour of these functionals. The GGA is divided into two regions as

shown in fig (3.2): (1) small s (0 < s . 3) and (2) large s (s & 3).

In region (1), small s is suitable for most physical applications, different Fxs

have nearly uniform shapes, which is the reason that different GGAs pro-

vide homogeneous improvement for many conventional systems with small

density gradient contributions. GGAs give an exchange energy lower than

the LDA for Fx ≥ 1. Generally, there are more swiftly varying density re-

gions in atoms than in condensed matter, which provides greater reduction

of the exchange energy in atoms than in molecules and solids. The most

significant features of present GGAs is the results in the lowering of bind-

ing energy, correcting the LDA overbinding and progressing agreement with

experiment. The average value of the increment is roughly 4/3, generating

the average exchange resembles to that proposed by Slater in the range

0 < s . 3, although for very different reasons. By the use of this factor 4/3

or an adjustable factor called “Xα” that tends to be between 1 and 4/3 for

this improvement.

In region (2), because of choosing different physical conditions for s → ∞,

Fxs generates the different limiting behaviours. In B88-GGA, FB88−GGA
x (s) ∼

s/ln(s) was chosen to provide the accurate exchange energy density (εx →

−1/2r). In PW91-GGA, F PW91−GGA
x (s) ∼ 1/

√
s was chosen to satisfy the

Lieb-Oxford bound and the non-uniform scaling condition that have to be

satisfied in case the functional is to have the proper limit for a thin layer
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or a line. In PBE-GGA, F PBE−GGA
x (s) ∼ const was chosen to drop the

non-uniform scaling condition in favor of a simplified parameterization. Be-

cause of choosing different physical conditions, Fxs generates the different

behaviour in region (2) not only views the lack of knowledge of the large

density gradient regions but also an inherent difficulty of the density gradi-

ent expansion in this region, even if one form of GGA somehow provides the

qualitative result for a certain physical property while others fail, it is not

expected that the form is preferred for other properties in which different

physical condition exist.

3.5 Explicit PBE form

The PBE form is one kind of exchange-correlation functional of GGA func-

tional. It is likely the simplest GGA functional. The PBE functional for

exchange is provided by a simple form for the expansion factor Fx. The

form is explained with Fx(0) = 1 and Fx → constant at large s,

Fx(s) = 1 + κ− κ/(1 + µs2/κ) (3.42)

It is important to mention that the value of κ = 0.804 is chosen to fulfill the

Lieb-Oxford bound. µ = 0.21951 is chosen to restore the linear response

form of the local approximation, i.e. it is chosen to avoid the term from the

correlation.

The form for correlation is introduced as the local correlation plus an addi-

tive term both of this depend upon the gradients and the spin polarization.

The form chosen to fulfill some condition is

EGGA−PBE
c [n↑, n↓] =

∫
d3rn[εhomc (rs, ζ) +H(rs, ζ, t)] (3.43)

where, ζ = (n↑, n↓)/n denotes the spin polarization, rs denotes the local

value of the density parameter and t represents a dimensionless gradient
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t = |∇n|/2φkTFn. Here, φ = ((1 + ζ)2/3 + (1 − ζ)2/3) and t can be scaled

by the screening wave factor kTF rather than kF . The Final form can be

written as

H =
e2

a0
γφ3 log

(
1 +

β

γ
t2

1 + At2

1 + A2 + A2t4

)
(3.44)

where, a0 represents Bohr radius and the factor e2/a0 is unity in atomic

unit. The function A is expressed as

A =
β

γ

[
exp

(
−εhomc

γφ3 e2

a0

)
− 1

]−1
(3.45)
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Results and discussion

4.1 Methodology

The size of the basis set in these calculations was controlled by the param-

eter RKmax = Rmt × Kmax which was chosen 6 (Rmt and Kmax indicates

the smallest muffin tin radius and the largest wave number of the basis set

respectively) and the initial Brillouin zone integration in the k-space was

done by 1000 k-points for each unit cell. During the self-consistent process,

the energy, charge, and force thresholds were set to 104 eV, 103 electrons

per atom, and 103 Ry/a.u., respectively. The graphite crystalline structure

was initially considered when simulating the graphene layer. The interlayer

Spacegroup P6/mmm

a 2.45Å

b 2.45Å

c 15Å
α 90◦

β 90◦

γ 120◦

Table 4.1: Parameter used in SCF calculation.

spacing was then increased until the energy changes converted to the nec-
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essary value (less than 0.001 eV) to avoid interaction between two carbon

layers in the graphite structure. To simulate pure and impure graphene,

the supercell approach was applied. The influence of Fe impurities and va-

cancies on graphene characteristics was investigated using many 3 × 3 × 1

supercells with various defect positions and concentrations. To achieve FM

graphene, certain C atoms were replaced with Fe atoms or removed at the

same sublattices to meet these requirements.

4.2 Electronic properties

Primitive graphene exhibits zero band gap with linear dispersion relation

around the EF but the electronic properties of doped graphene and vacant

graphene are modified, notably the electronic DOS. The value of Eg is pro-

portional to the doping concentration of any types of adatoms. But it is

effective to a certain number of doping concentration. Upto this certain

number of doping concentration, the value of Eg does not depend on the

doping type. Furthermore, one can also deduce that the value of Eg rises

almost linearly with any type of doping concentration. The modification of

TDOS due to doping of Fe and vacancy of its own atom has been depicted in

fig-(4.1), (4.2) and (4.3) . Fig-(4.1), (4.2) and (4.3) represent the primitive

structure along with its TDOS.

In fig-(4.1), (4.2) and (4.3), B, C and D represent the doped, vacancy and

both doped and vacancy system respectively. To define the contribution of

each atomic orbital in chemical bonding, the partial density of state (PDOS)

for both C 2s and 2p and Fe 3d orbitals are deliberated. The 3d orbital

of the iron atom is deffused in the energy limit resembling to the 2s and

2p orbitals of their nearby neighbor carbon atoms. To maintain metallic

behavior, the sp2 bands of graphene hybridize with the 3d orbital of iron

and creates strong covalent bond between them at Fermi energy.
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B1

B2

Figure 4.1: The TDOS and structure of the supercells (Fe doped).

4.3 Magnetic properties

The exchange interactions between magnetic impurities embedded in graphene

are mediated by conduction electrons of the host. To explain the indi-

rect exchange interaction for metal’s intrinsic magnetic form, the RKKY

(Ruderman-Kittle-Kasuya-Yosida) theory is the efficient model. The RKKY

theory is also applicable for highly degenerate semiconductors. Various type

of studies remain for the RKKY coupling in graphene, where the standard

perturbative approach applied to a continuum field-theoretic description of
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C1

C2

Figure 4.2: The TDOS and structure of the supercells (atom vacancy).

graphene and exact diagonalization on a finite size lattice have similar re-

sults.

The origin of the RKKY exchange interactions are observed by the PDOS

of the C and Fe atoms. The magnetic properties of graphene supercells

indicate due to the hybridizations between 3d orbital of iron atoms and 2s

and 2p orbitals of carbon atoms. The magnetic moment of these graphene

supercells are given in table 4.2. The magnetic moment of a free Fe is 2.22
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D1

D2

Figure 4.3: The TDOS and structure of the supercells (both Fe doped and atom

vacancy).

µB. But when Fe atom is embedded in graphene, the magnetic moment is

decreased to 1.3496. The minimize of electrons with majority spins in Fe

atom by hybridization between their 3d orbitals and sp2 orbitals of C atoms

is the main reason for this decrement. One Fe atom in graphene struc-

ture doesn’t have the monotonic effect on the magnitude of the magnetic

moment. But the increase of the concentration of Fe atom in the graphene

structure rises the magnetic moment. The distance between Fe atoms in the

supercells also transforms this magnitude. The magnetic moment is lower
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B1

B2

Figure 4.4: Band structure of the supercells (Fe doped).
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C1

C2

Figure 4.5: Band structure of the supercells (atom vacancy).
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D1

D2

Figure 4.6: Band structure of the supercells (both Fe doped and atom vacancy).
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B1 B2

D1 D2

Figure 4.7: The PDOS of the supercells.

No. Total Energy (Ry) Magnetic Moment
(µB/cell)

B1 -3151.87550948 1.34963
B2 -5621.61120669 5.26898
C1 -606.26886482 0.91835
C2 -530.41816819 1.45915

Table 4.2: The energy difference and magnetic moment of the supercells.

due to the higher separation between Fe atoms because the indirect ex-

change interactions are dependent on the distance between magnetic atoms.

Another process to generate magnetic influence is the vacancy created in

the graphene structure. When a C atom remove from the graphene struc-

ture, one sp2 dangling bond will obtain. This dangling bond is generated

by the three nearest neighbor atoms around the vacancy and two of them

share their electrons and construct the pentagon on behalf of the hexagon.

Magnetic moment is attained by this third unsaturated bond. Hence, the

vacancies behave as embedded magnetic atoms in graphene structure. But

the obtained magnetic moment due to generate vacancies is lower than the

magnetic moment in presence of Fe impurities. The difference in the efficient
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number of unpaired spins of them is the main reason for that. The increase

of the concentration of vacancies and distance between vacancies transform

this magnitude of magnetic moment but it is not so high. Detailed discus-

sion of experimental and theoretical studies in presence of vacancies.

4.4 Optical properties

In this section, dielectric function, absorption spectra, electron energy loss

spectra (EELS), reflectivity and refractive index are included.

4.4.1 Dielectric function

In fig-(4.8), the real and imaginary parts of the dielectric function ver-

sus the photon energy of electric field of electromagnetic wave to graphene

plane change at different frequencies relative to the primitive graphene. The

magnitudes of real and imaginary parts of the dielectric function decrease

roughly beyond 1.5 ev in fig-(4.8).

The value of static dielectric constant (Re ε(0)) for primitive graphene is

2.4 corresponding to the computation done by Palash Nath et al. By virtue

of embedding defects, this quantity increases strongly. But the increase of

the defect concentration falls the static dielectric constant for the conver-

sion to the case of magnetic moment. Usually replacing the C atoms with

Fe impurities has more impact on static dielectric constant relative to the

vacancies of C atom.

The imaginary part of the dielectric function stay identical like real part.

The maximum peak of Im ε(ω) finds in the visible region of pure graphene.

But the quantity turns to the infrared(IR) region for defected graphene.

This is the outcomes of closely separated flat electronic bands around the

Fermi level. The concentration of defects and distance between them in
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each supercell are main reason for this turn.

Figure 4.8: The real and imaginary part of the dielectric function for the su-

percells.

4.4.2 Absorption spectra and Electron energy loss spec-

tra (EELS)

In Fig-(4.9), the optical absorption spectra for parallel polarization of an

electromagnetic wave’s electric field for both pure and defective graphene

are displayed.Pure graphene has a maximum peak about 2.7 eV, which cor-

responds to the imaginary part of the dielectric function’s maximum peak.
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Because of the increase in the number of free carriers, inserting flaws in the

graphene structure causes the optical absorption spectra to broaden in the

visible to IR region. To put it another way, some peaks near the Fermi level

in the DOS plot indicate the presence of extra carriers in the low energy

level, which leads to the inter band transition and hence adsorption in the

low frequency photon.

In addition, the JDOS curves show some peaks at low energies, showing

that photon absorption occurs in this range. Changes in concentration and

distance between defects have less impact on the absorption curve. Fig-(4.9)

shows the EELS for different considered cases and electric field parallel il-

lumination. At low energies, these spectra show EELS decrease. For pure

graphene, there are two peaks around 4 eV and 4.4 eV with 1.84 and 1.75 in-

tensities respectively that are related to in plane Plasmon excitations. The

resulting results are consistent with the experimental data available. The

presence of impurities in the graphene structure causes the EELS peaks to

have a larger amplitude and energy. However, when the quantity of con-

taminants rises, the amplitude of EELS peaks decreases, becoming broader

and shorter. In optical gas sensors that detect changes in electronic charac-

teristics, lowering the EELS intensity is beneficial. The amplitude of EELS

diminishes in the energy range associated to the greatest absorption peaks,

as shown in Fig-(4.9). As a result, these structures are appropriate for op-

tical gas sensing, which detects variations in photo-current caused by gas

absorption.

4.4.3 Reflectivity and Refractive index

Fig-(4.10) shows the real component of the refractive index (N) and reflectiv-

ity vs incident photon energy for parallel polarization of an electromagnetic

wave’s electric field. According to this diagram, the maximum refractive

index for pure graphene is around 2.18 in the visible area, but in the event

of defected graphene, this quantity rapidly increases and shifts to the IR
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region. In reality, the size and energy of the maximum refractive index are

affected by the concentration, nature, and distance between defects. The

magnitude of the maximum refractive index in the presence of Fe impurities,

for example, is greater than in the absence of vacancies. However, as seen

in fig-(4.10), this quantity decreases as the impurity concentration rises and

the distance between impurity sites decreases.

It should be noted that the refractive index of the system is directly propor-

tional to its magnetic moment (µ), as shown by the relationship N =
√
µε,

which demonstrates the relationship between refractive index and magnetic

characteristics. As a result, changing the magnetic moment allows for re-

fractive index engineering. The refractive index can be used to calculate the

reflectivity of pure and impure graphene structures for parallel polarization

of the electric field. Pure graphene has a maximum reflectivity of 3.2 eV,

which corresponds to a magnitude of 0.27. Zero or very tiny reflectivity

is found in the energy range greater than 6 eV, which is connected to the

modest values of two portions of the dielectric function at this range. The

reflectivity spectra of impure graphene differ greatly from those of pure

graphene. Reflectivity is low in the visible and infrared ranges for pure

graphene, and it is zero at higher energies. The degree of reflectance in

the IR to ultra violet (UV) band increases when C atoms are replaced with

vacancies or Fe atoms. The increase in free carrier density causes the rise

in reflectance. Absorption and reflection become modest for energy ranges

greater than 6 eV. As a result, defected graphene behaves similarly to pure

graphene in this range, and both are transparent in the deep ultraviolet.
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Figure 4.9: The absorption coefficient and EELS for the supercells.
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Figure 4.10: The Reflectivity and refractive index for the supercells.
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Conclusions

It is demonstrated through the DFT calculation within GGA that doping

of Fe and vacancies at graphene structure conspicuously alter the magnetic

and optical properties of graphene. It has been shown that the presence

of Fe impurities and vacancies at graphene structure can not change the

electronic property of graphene that means the conductive behaviour of

graphene remains. According to the obtained results, the FM phase is

the most feasible point by substituting the Fe atoms and vacancies in the

sublattice of graphene. Besides, the magnetic moment of supercells increases

due to increasing the vacancy and Fe atom concentrations as well as reduces

by increasing the distance between Fe atoms. It occurs because the distance

between magnetic atoms is dependent on the indirect exchange interactions.

But the distance between vacancies can’t have any significant effect on the

magnetic moment of supercells.

On the whole, substituting Fe for C atoms has a greater impact on magnetic

and optical properties than C vacancies.
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Appendix A

List of Abbreviations

BZ : Brillouin Zone

DFT : Density Functional Theory

DOS : Density of States

GGA : Generalized Gradient Approximation

HK : Hohenberg-Kohn

KS : Kohn-Sham

LSDA : Local Spin Density Approximation

SOC : Spin Orbit Coupling

XC : Exchange correlation
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