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Abstract 

 

In this report, we studied the structural, electronic, optical, and elastic properties of the metal 

halide perovskites NaMCl3 (M = In, Al) compounds to investigate their potential as future 

photovoltaic materials by using the Perdew-Burke-Ernzerhof Generalized Gradient exchange 

and correlation potential as implemented in WIEN2k code. The electronic band structure 

showed that our studied compounds are metallic with zero band gap. The optical and elastic 

properties also confirm the metallic properties of NaMCl3 (M = In, Al) materials. So from the 

electronic, optical, and elastic properties, we can say that these perovskite compounds can be 

used as a good metallic conductor. 

 

 

 



ii 
 

 

 

 

Acknowledgments 

 

Firstly, I praise and thank Almighty God, the Lords of the worlds, the owner of life and death. 

Secondly, I would like to thank my respected supervisor, Dr. Mohammad Abdur Rashid, 

Assistant Professor, Department of Physics, Jashore University of Science Technology, for his 

constant support and guidance to complete my project work properly.  

I am thankful to the authors of different publications (included in the bibliography), from where 

I have collected many supplementary pieces of information. Also, my gratitude goes to all 

faculty members of the department of physics for much helpful decision making at different 

times.  

My appreciation goes to my parents, siblings, and all family members for their prayers, 

financial and emotional support. Also, my gratitude goes to all faculty members of the 

department of physics for much helpful decision-making at different times.  

I would also like to thank my friends who have helped me to complete this project.  

  



iii 
 

 

 

 

Dedication 

 

This work is dedicated to my family for their relentless support throughout the struggle. 

And to all the scientists that keep working to make the world a better place.  



iv 
 

 

 

 

Table of Contents 

 

Abstract                                                                                                                                     i 

Acknowledgements                                                                                                                  ii 

Dedication                                                                                                                                iii 

Table of Contents                                                                                                                    iv 

List of Abbreviation                                                                                                                vi 

List of Figures                                                                                                                        vii 

List of Tables                                                                                                                         viii                                                                                                                              

1. Introduction                                                                                                                                   1 

2. Basic Quantum Mechanics                                                                                                      4 

     2.1 Schrodinger groundbreaking equation ........................................................................... 4 

     2.2 Time-independent equation …………………………………………………………... 5 

     2.3 The wave function …………………………………………………………………….. 6 

     2.4 Born-Oppenheimer approximation …………………………………………………… 7 

     2.5 The Hartree-Fock approach …………………………………………………………... 7  

     2.6 Limitations and failings of the Hartree-Fock approach ……………………………….11 

3. Density Functional Theory (DFT)                                                                                     13 

    3.1 A new base variable – the electron density …………………………………………... 13 

    3.2 Thomas-Fermi theory ………………………………………………………………... 14 

    3.3 Hohenberg-Kohn Theory …………………………………………………………….. 15 



v 
 

    3.4 Kohn-Sham Equations ……………………………………………………………….. 16 

    3.5 Solving the Kohn-Sham equation ……………………………………………………. 18 

    3.6 Exchange-correlation potential ………………………………………………………. 19 

          3.6.1 Local density approximation (LDA) …………………………………………… 19 

          3.6.2 Hybrid functional approach (HSE06) ………………………………………….. 20 

          3.6.3 The Generalized-Gradient Approximation (GGA) …………………………….. 21 

4. Results and Discussion                                                                                                          23 

    4.1 Geometric structure and volume optimization ………………………………………. 23                                

    4.2 Self Consistent field (SCF) …………………………………………………………... 26                                                                                              

    4.3 Energy band structure ………………………………………………………………... 27 

    4.4 Density of States (DOS) ……………………………………………………………… 28                                                                                             

    4.5 Optical Properties ……………………………………………………………………. 30 

         4.5.1 The Absorption Coefficient …………………………………………………….. 30 

         4.5.2 Optical Conductivity ……………………………………………………………. 31 

         4.5.3 Refractive Index ………………………………………………………………… 33 

         4.5.4 Optical Reflectivity …………………………………………………………......  34 

         4.5.5 Dielectric Function ……………………………………………………………...  35 

         4.5.6 Electron Energy Loss …………………………………………………………... 36 

    4.6 Elastic properties …………………………………………………………………….. 38 

5. Conclusion                                                                                                                            41 

Bibliography                                                                                                                                42  

  



vi 
 

 

 

 

List of Abbreviation 

 

Density-Functional Theory                                                                                                 DFT 

Exchange-Correlation                                                                                                         XC 

Gradient-Expansion Approximation                                                                                  GEA 

Generalized-Gradient Approximation                                                                                GGA 

Hartree-Fock                                                                                                                        HF 

Hohenberg-Kohn                                                                                                                 HK 

Kohn-Sham                                                                                                                          HS 

Local Density Approximation                                                                                             LDA 

Perdew-Burke-Ernzerhof                                                                                                    PBE 

Photovoltaics                                                                                                                        PV 

Thomas-Fermi                                                                                                                      TF 

Self-Consistent Field                                                                                                           SCF 

Electron Energy Loss                                                                                                          EEL 

            

  



vii 
 

 

 

 

List of Figures 

 

3.1 Self-consistent calculations and relaxation for solving the KS equation ………………. 18 

4.1 Crystal Structure of cubic NaMCl3 (M =In, Al) ………………………………………… 24 

4.2 Energy v/s volume optimization curves for (a) NaInCl3 and (b) NaAlCl3 ……………… 25 

4.3 Estimated Band structure of(a) NaInCl3 and (b) NaAlCl3.................................................. 27 

4.4 Density of States (DOS) of (a) NaInCl3 and (b) NaAlCl3.................................................. 29 

4.5 Optical absorption for NaInCl3  and NaAlCl3 ………………………………….……….. 31 

4.6 Optical Conductivity for NaInCl3 and NaAlCl3 ……………………………………….... 32 

4.7 Refractive Index for NaInCl3 and NaAlCl3 …………………………………….……….. 33 

4.8 Optical reflectivity for NaInCl3 and NaAlCl3 ……………………………………..…….. 34 

4.9 Real dielectric tensor for NaInCl3 and NaAlCl3……………………………………...….. 35 

4.10 Imaginary dielectric tensor for NaInCl3 and NaAlCl3………………………………..… 36 

4.11 Electron energy loss for NaInCl3 and NaAlCl3…………………………………………  37   

 

  



viii 
 

 

 

 

List of Tables 

 

4.1 Optimized lattice parameters and Wyckoff positions for cubic NaMCl3 (M = In, Al) …. 23 

4.2 Parameter used in SCF (PBE) calculation of NaMCl3 (M = In, Al) ……………………  26 

4.3 Calculated band gap (eV), Total energy (eV) and Fermi Energy (eV) of NaMCl3 (M =In, 

Al) using PBE-GGA potential………………………………...…………………………….   27 

4.4 Calculated elastic constants, C11, C12 and C44 (in GPa) and Bulk modulus B(GPa), Young 

modulus Y(GPa), Shear modulus G(GPa), Poisson’s ratio(v), Cauchy pressure (𝐶𝑝 = 𝐶12 −

𝐶44) (GPa), Pugh’s ratio (B/G) for NaMCl3 (M = In, Al) at zero pressure  

………………………………………………………………………………………………. 39 

4.5 Calculated longitudinal (vl), transverse (vt) and average (vm) wave velocities; Debye 

temperature (θ𝐷); and melting temperature (Tm)   for NaMCl3 (M = In, Al) at zero 

pressure………………………………………………………………………………...……  40 

 

  



ix 
 

 

 

 

 

 

 

 

Structural, electronic, optical and elastic 

properties of perovskite materials  

NaMCl3 (M = In, Al): First  

principle investigations 
 



1 

 

 

 

 

Chapter 1 

 

Introduction 

 

 

The name of the systems we studied are NaMCl3 (M = In, Al). These materials are called metal 

halide perovskite materials. The most well-known forms of perovskite crystals found on Earth 

are halide-perovskites (ABX3), oxide-perovskites (ABO3), and nitride-perovskites (ABN3). 

Halide perovskites have attracted a lot of interest as a result of their widespread use in the 

optical, energy storage, and semiconducting industries [1]. Perovskites NaMCl3 (M = In, Al) 

have cubic structures (space group Pm-3m). The general chemical formula used to describe 

the halide perovskite materials is ABX3, where A and B are cations with A being bigger than 

B and X being the anion, which is commonly oxides or halogens [2]. The perovskite crystal 

family covers a wide range of physical properties, including high magneto resistance, a low-

temperature coefficient of resistivity, and laser sources. Depending on their chemical 

compositions and elemental configurations, perovskites exhibit a wide variety of physical 

characteristics [3–5]. In NaMCl3 (M = In, Al) compounds Na is a monovalent cation, Al and 

In are trivalent metal cations and Cl is a halogen group atom. In this manuscript, we calculated 

the structural, electronic, optical, and elastic properties of NaMCl3 (M = In, Al) compounds to 

highlight their potential in future photovoltaic applications [6].  

Significant growth in energy use, as well as other serious environmental challenges linked with 

traditional sources, has sounded the alarm for the scientific community to look for long-term 

sustainable alternatives. Renewable energy sources are often regarded as the most convenient 
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and hassle-free option, and solar energy is unanimously regarded as the most dominating non-

conventional source for desired energy production. Solar cells, which are used to gather solar 

energy, play an important part in achieving efficient energy production. Among all preceding 

estimates, developing unique solar materials with properties such as cheaper cost, efficient 

generating capacity, eco-friendly nature, and universal compatibility is a top priority [7,8]. 

Perovskites halides are being studied extensively because of their intriguing and enticing 

features, as well as their wide range of uses and availability as a common mineral on Earth[9]. 

Ferro electricity, charge ordering, superconductivity, gigantic magneto resistance, high thermo 

power, spin-dependent transport, and exotic structural, electrical, magnetic, optical, and 

transport properties are among the characteristics discovered. They are also regarded as 

prospective materials for microelectronics and telecommunications due to their promise in a 

variety of technical applications such as fuel cells, sensors, memory devices, spintronics, and 

photovoltaics [10–12]. Different kinds of perovskite materials were researched extensively, 

including chalcogenide perovskite (AMO3) and halide perovskite (ABX3), which is classed as 

alkali halide and organometal halide. Oxide-based perovskites have been intensively explored 

for their excellent ferroelectric and superconducting characteristics in a variety of applications. 

The most widely used metal halide perovskites are cesium lead halide (CsPbX3) and 

methylammonium lead halide (CH3NH3PbX3) perovskites [2]. The halide perovskites, 

particularly lead-based perovskites, have high power conversion efficiencies and may thus be 

used in a variety of optoelectronics applications including photovoltaics, light-emitting diodes, 

sensors, lasers, and radiation detectors. The poisonous nature of lead, which is exceedingly 

harmful to mental development, human growth, and the entire environment, is the primary 

disadvantage of these lead-based perovskites [13]. We studied NaMCl3 (M=In, Al) materials 

because these materials' structural, electronics, optical and chemical properties are unknown 

and these materials are not harmful to human health. Perovskite material's distinctive physical 

features, such as high absorption coefficient, long-range ambipolar charge transfer, low 

exciton-binding energy, high dielectric constant, ferroelectric properties, and so on, have 

attracted a lot of interest in optoelectronic and photovoltaic applications [2].  

The structural, electrical, and optical characteristics of lead-free tin halide perovskite NaMCl3 

(M = In, Al) compounds are calculated using the WIEN2k code and the full potential linearized 

augmented plane wave (FP-LAPW) method[14]. It's worth noting that the solution to the well-

known Kohn-Sham equation for a periodic crystal system is provided in this manner [15]. 
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𝜓𝑘 = ∑ 𝑐𝑛𝜑𝑘𝑛

𝑛

 

Here, ψk is the wave function, kn is the reciprocal lattice vector and 𝑐𝑛 represents the 

coefficient of the Rayleigh-Ritz vibrational principle respectively. It's also worth noting that 

the correctness of the results is determined by the exchange-correlation functional used[15]. 

The Perdew-Burke-Ernzerhof Generalized-Gradient-Approximation (PBE-GGA) is used in 

the current computations [16].   

WIEN2k is a Fortran-based computer application that conducts quantum mechanical 

computations on periodic solids. It solves the Kohn–Sham equations of density functional 

theory using the full-potential (linearized) augmented plane-wave and local-orbitals [FP-

LAPW + lo] basis set. WIEN2k calculates a solid's electrical structure using density functional 

theory. It is based on the full potential energy (linear) augmented plane wave ((L) APW) + 

local orbit (lo) approach, which is the most precise way for calculating the bond structure. In 

density universal information, local (spin) density approximation (LDA) or generalized 

gradient approximation (GGA) can be utilized [14]. It is considered to be one of the most 

accurate solid modeling approaches.  

In this project, we begin with the introduction of metal perovskite NaMCl3 (M = In, Al) 

materials in the first chapter. In this chapter, we have discussed what is NaMCl3 (M = In, Al) 

materials, what is its importance, and why we are studying it. In chapter 2 we discuss the basic 

quantum mechanics which starts with Schrodinger's groundbreaking equation. This chapter 

contains time-independent equations, wave function, Born-Oppenheimer approximation, the 

Hartree-Fock approach, and the limitations of the Hartree-Fock approach. Chapter 3 contains 

the theoretical investigation of Density Functional Theory (DFT). In this chapter, we discussed 

the electron density, Thomas-Fermi theory, Hohenberg-Kohn theory, Kohn-Sham equations, 

Solving the Khon-Sham equation, and the Exchange-correlation potential such as Local 

density approximation (LDA), Hybrid functional approach, Generalized-Gradient 

Approximation (GGA). In chapter 4, we presented the results and discussions part of this 

project. In this chapter, firstly we find the crystal structure then we calculate the energy band 

structure, the density of states (DOS), optical absorption, conductivity, reflectivity, refractivity, 

real and imaginary dielectric tensor, and elastic properties of NaInCl3 and NaAlCl3. We have 

also done the non-magnetic volume optimization and SCF calculation of perovskite NaMCl3 

(M = In, Al) materials. And in chapter 5 we discussed the overall conclusion of this report. 
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Chapter 2 

 

Basic Quantum Mechanics 

 

 

2.1 Schrodinger groundbreaking equation 

In 1926, Erwin Schrödinger attempt to describe the so-called ‘matter waves’, where he used 

de Broglie’s relations to describe hypothetical plane waves, led to the most general form of the 

equation named after him, the time-dependent Schrodinger equation [17] 

      iћ
𝜕

𝜕𝑡
 𝜓(𝑟, t) = �̂�𝜓(𝑟, t).                  (2.1) 

Because a fully relativistic formulation of the formula is frequently impractical, Schrödinger 

proposed a non-relativistic approximation, which is now widely employed, particularly in 

quantum chemistry. 

Using the Hamiltonian for a single particle  

                           �̂� = �̂� + �̂� = −
ћ2

2𝑚
 ∇⃗⃗⃗

2
+ V  (𝑟, t)                                          (2.2)                                                          

leads to the (non-relativistic) time-dependent single-particle Schrödinger equation   

iћ 
𝜕

𝜕𝑡
𝜓 (𝑟, t) = [−

ћ2

2𝑚
 ∇⃗⃗⃗

2
+ V (𝑟, t) ] �̂�𝜓 (𝑟, t).             (2.3) 
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In this project, from now on only non-relativistic cases are considered. 

For N particles in three dimensions, the Hamiltonian is 

�̂� = ∑ −
𝑝𝑖

2

2𝑚𝑖

𝑁
𝑖=1  + V (𝑟1, 𝑟2 … . , 𝑟𝑁, 𝑡) = −

ћ2

2
 ∑

1

𝑚𝑖

𝑁
𝑖=1  + V (𝑟1, 𝑟2 … . , 𝑟𝑁, 𝑡).                         

   (2.4) 

The corresponding Schrödinger equation reads 

iћ 
𝜕

𝜕𝑡
 𝜓 (𝑟1, 𝑟2 … . , 𝑟𝑁 , 𝑡) = [ − 

ћ2

2
 ∑

1

𝑚𝑖

𝑁
𝑖=1  ∇𝑖

2+ V (𝑟1, 𝑟2 … . , 𝑟𝑁 , 𝑡) ] 𝜓(𝑟1, 𝑟2 … . , 𝑟𝑁 , 𝑡)         (2.5) 

 

2.2. Time-independent equation 

The solutions of the time-independent Schrödinger equation, where the Hamiltonian has no 

time dependence (implying a time-independent potential), are special instances. The solutions 

to the time-independent Schrödinger equation are special examples, where the Hamiltonian 

itself has no time-dependency (which implies a time-independent potential V (𝑟1,𝑟2 … . , 𝑟𝑁 , 𝑡), 

and the solutions, therefore, illustrate standing waves which are called stationary states or 

orbitals). The time-independent Schrödinger equation is not only easier to deal with, but 

understanding its solutions also gives essential insight into dealing with the equivalent time-

dependent equation, and the solutions, therefore, characterize stationary states or orbitals). The 

time-independent Schrödinger equation is not only simpler to solve, but understanding its 

solutions also gives you valuable insight into how to solve the time-dependent Schrödinger 

equation. 

The separation of variables technique is used to create the time-independent equation, in which 

the spatial portion of the wave function is separated from the temporal part via the spatial part 

of the wave function [18]. 

𝜓(𝑟1, 𝑟2 … . , 𝑟𝑁 , 𝑡) = 𝜓(𝑟1, 𝑟2, … . , 𝑟𝑁) τ (t) = 𝜓(𝑟1, 𝑟2, … . , 𝑟𝑁). 𝑒−𝑖𝜔𝑡   (2.6) 

In addition, the l.h.s. of the equation simplifies to the Hamiltonian's energy eigenvalue 

multiplied by the wave function, yielding the general eigenvalue equation 

          E𝜓(𝑟1, 𝑟2, … . , 𝑟𝑁) =  �̂�𝜓(𝑟1, 𝑟2, … . , 𝑟𝑁)               (2.7) 

The Schrödinger equation is rewritten using the many-body Hamiltonian once again 

   E 𝜓 (𝑟1, 𝑟2, … . , 𝑟𝑁) = [ − 
ћ2

2
 ∑

1

mi

N
i=1  ∇i

2+ V (𝑟1, 𝑟2, … . , 𝑟𝑁] 𝜓 (𝑟1, 𝑟2, … . , 𝑟𝑁).                        (2.8) 
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2.3 The Wave Function 

In quantum physics, a wave function is a mathematical representation of the quantum state of 

an isolated quantum system. The wave function is a complex-valued probability amplitude 

from which probabilities for the potential outcomes of system observations may be calculated. 

The Greek letters ψ and Ψ are the most used symbols for wave functions (lower-case and 

capital psi, respectively). 

The first and most essential postulate is that a particle's state is fully represented by its (time-

dependent) wave function, which means that the wave function includes all information about 

the particle's state. 

The discussion will be limited to the time-independent wave function for simplicity. When it 

comes to physical quantities, there's always the subject of possible interpretations as well as 

observations. A basic premise of the Copenhagen interpretation of quantum mechanics is the 

Born probability interpretation of the wave function, which offers a physical explanation for 

the square of the wave function as a probability density [19,20] 

  |𝜓(𝑟1, 𝑟2 … . , 𝑟𝑁)|2 𝑑𝑟1𝑑𝑟2 … . 𝑑𝑟𝑁.   (2.9) 

The chance of particles 1,2,...,N being found in the same volume element 𝑑𝑟1𝑑𝑟2 … . 𝑑𝑟𝑁 at the 

same time is described by equation (2.9) [21]. It's also important to think about what occurs if 

two particles' locations are switched. The overall probability density cannot rely on such an 

interchange, i.e. 

|𝜓(𝑟1, 𝑟2 … . . , 𝑟𝑖, 𝑟𝑗 , . . , 𝑟𝑁)|2 = |𝜓(𝑟1, 𝑟2 … . . , 𝑟𝑗 , 𝑟𝑖, . . , 𝑟𝑁)|2 (2.10) 

During a particle exchange, there are only two possible outcomes for the wave function. The 

first is a symmetrical wave function that remains unchanged as a result of the exchange. This 

is what bosons are like (particles with integer or zero spins). Another alternative is an anti-

symmetrical wave function, in which a sign change occurs when two particles are exchanged, 

which corresponds to fermions (particles with half-integer spin) [22,23]. 

Only electrons, which are fermions, are discussed in this report. The Pauli principle asserts that 

no two electrons may be in the same state, where state refers to the wave function's orbital and 

spin parts (the term spin coordinates will be discussed later in more detail). The antisymmetry 

principle is a quantum-mechanical formalization of Pauli's theoretical theories in spectrum 

description (e.g. alkaline doublets) [22,23]. 
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The normalizing of the wave function is another consequence of the probability interpretation. 

If equation (2.9) explains the chance of finding a particle in a volume element, using the whole 

range of coordinates as the volume element must provide a probability of one, implying that 

all particles must be located someplace in space. This is the same as the wave function's 

normalizing criterion. 

                                      ∫ 𝑑𝑟1 ∫ 𝑑𝑟2. . . ∫ 𝑑𝑟𝑁 |𝜓(𝑟1, 𝑟2 … . . , 𝑟𝑗 , 𝑟𝑖, . . , 𝑟𝑁)|2 = 1                 (2.11) 

Equation (2.11) also reveals the physical conditions that a wave function must meet. Wave 

functions must be square-integrable and continuous over the whole spatial range.          

Another essential aspect of the wave function is that computing the expectation values of 

operators with it yields the expectation value of the corresponding observable. For an 

observable O(𝑟1, 𝑟2 … . , 𝑟𝑁), this can generally be written as 

                   O = 〈𝑂〉  = ∫ 𝑑𝑟1 ∫ 𝑑𝑟2. . . ∫ 𝑑𝑟𝑁 𝜓∗ (𝑟1, 𝑟2 … . , 𝑟𝑁)𝑂 ̂ 𝜓 (𝑟1, 𝑟2 … . , 𝑟𝑁).         (2.12)             

 

2.4 Born-Oppenheimer approximation 

Because nuclei are substantially heavier than electrons, the adiabatic or Born-Oppenheimer 

(B-O) approximation is based on the fact that electron velocities are much greater than nuclei 

speeds (Born & Oppenheimer, 1927). In the Born-Oppenheimer approximation, we freeze the 

nuclear position and calculate the electronic wave function and energy 

                                  �̂�𝐵−𝑂(𝑅) = −
1

2
∑ 𝛻𝑖

2
𝑖 − ∑

𝑍𝐼

|𝑟𝑖−𝑅𝐼|𝑖,𝐼 +
1

2
∑

𝑒2

|𝑟𝑖−𝑟𝑗|𝑖±𝐼                           (2.13) 

Where the first, second, and third terms are respectively, the kinetic energy of the electrons, 

the electrons-nucleus Coulomb interaction, and the electron-electron Coulomb interaction. The 

two-body Coulomb terms and the exchange-correlation (in the third term) in the many-body 

equation (eqn. 2.13) necessitate additional reduction. This problem may be greatly simplified 

using Density Functional Theory (DFT) [24]. 

2.5 The Hartree-Fock approach     

The Hartree-Fock (HF) approximation, commonly known as the mean-field approximation 

(also known as self-consistent field approximation), presents an approximation that allows a 

physical issue to be solved analytically in some cases. The HF technique is primarily concerned 
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with numerically addressing difficult many-body issues based on the study of effective non-

interacting particle models since it provides valuable insight into the features of many-electron 

systems. The ansatz used to express a many-body wave function is unique to the HF approach 

[24]. 

Variational calculus, which is comparable to the least-action principle of classical mechanics, 

may be used to find a viable method for approximating the analytically not accessible solutions 

to many-body problems. The ground state wave function ψ0 may be approximated via 

variational calculus and corresponds to the system's lowest energy E0. T. Flieβbach has offered 

an excellent source of information on the fundamentals of variational calculus [25]. 

So, at this moment only the electronic Schrodinger equation is of interest, therefore in the next 

part we set �̂� ≡  �̂� 𝑒𝑙 , 𝐸 ≡  𝐸𝑒𝑙 , and so on.  

The expectation values of operators are used to compute observables in quantum 

mechanics. Because the Hamilton operator corresponds to the energy as an observable, the 

energy of a generic Hamiltonian may be computed as [18,20] 

                   E = 〈 �̂�〉  = ∫ 𝑑𝑟1 ∫ 𝑑𝑟2. . . ∫ 𝑑𝑟𝑁 𝜓∗ (𝑟1, 𝑟2 … . , 𝑟𝑁) 𝐻 ̂𝜓 (𝑟1, 𝑟2 … . , 𝑟𝑁).         (2.14) 

According to the Hartree-Fock method, the energy acquired by any (normalized) trial wave 

function that differs from the real ground state wave function is always an upper bound, i.e. 

larger than the actual ground state energy. If the trial function occurs to be desired ground state 

wave function, the energies are equal 

                                                              𝐸𝑡𝑟𝑖𝑎𝑙  ≥    𝐸0                                                        (2.15) 

With 

           𝐸𝑡𝑟𝑖𝑎𝑙  = ∫  𝑑r⃗1 ∫ 𝑑r⃗2. . . ∫ 𝑑r⃗𝑁 𝜓∗ 
𝑡𝑟𝑖𝑎𝑙  

(r⃗1, r⃗2 … . , r⃗𝑁)𝐻 ̂ 𝜓𝑡𝑟𝑖𝑎𝑙  (r⃗1, r⃗2 … . , r⃗𝑁).   (2.16) 

and 

                 𝐸0  =  ∫  𝑑𝑟1 ∫ 𝑑𝑟2. . . ∫ 𝑑𝑟𝑁 𝜓∗ 
0  

(𝑟1, 𝑟2 … . , 𝑟𝑁) 𝐻 ̂ 𝜓0  (𝑟1, 𝑟2 … . , 𝑟𝑁).            (2.17) 

According to the Hartree-Fock method, the energy acquired by any (normalized) trial wave 

function that differs from the real ground state wave function is always an upper bound, i.e. 

larger than the actual ground-state energy [26].  

In that notation, equations (2.15) to (2.18) can be written as 
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                                 ⟨𝜓𝑡𝑟𝑖𝑎𝑙  |𝐻 ̂|𝜓𝑡𝑟𝑖𝑎𝑙  ⟩ = 𝐸𝑡𝑟𝑖𝑎𝑙  ≥    𝐸0 =  ⟨𝜓0 |𝐻 ̂|𝜓0  ⟩                        (2.18)    

Proof: [20]  The eigenfunctions 𝜓𝑖   of the Hamiltonian 𝐻 ̂ (each corresponding to an energy 

eigenvalue E𝑖  ) form a complete basis set, therefore any normalized trial wave function 𝜓𝑡𝑟𝑖𝑎𝑙 

can be expressed as linear combination of those eigenfunctions.   

                                           𝜓𝑡𝑟𝑖𝑎𝑙 =  ∑ 𝜆𝑖𝑖 𝜓𝑖                                                                     (2.19)   

The eigenfunctions are assumed to be orthogonal and normalized in this case. As a result of 

the request to normalize the trial wave function, it follows that 

          ⟨𝜓𝑡𝑟𝑖𝑎𝑙  |𝜓𝑡𝑟𝑖𝑎𝑙  ⟩ =  ⟨∑ 𝜆𝑖𝑖 𝜓𝑖  | ∑ 𝜆𝑗𝑗 𝜓𝑗  ⟩ = ∑ ∑ 𝜆𝑖
∗

𝑗 𝜆𝑗𝑖 ⟨𝜓𝑖  |𝜓𝑗  ⟩ =  |𝜆𝑗|
2
          (2.20) 

On the other hand, following (2.17) and (2.19) 

         𝐸𝑡𝑟𝑖𝑎𝑙  =  ⟨𝜓𝑡𝑟𝑖𝑎𝑙  |𝐻 ̂|𝜓𝑡𝑟𝑖𝑎𝑙  ⟩ =  ⟨∑ 𝜆𝑖𝑖 𝜓𝑖  |𝐻 ̂| ∑ 𝜆𝑗𝑗 𝜓𝑗  ⟩ = ∑ 𝐸𝑗  |𝜆𝑗|
2

  𝑗                   (2.21) 

In addition, the ground state energy 𝐸0   is the lowest possible energy per definition, and 

therefore has the smallest eigenvalue (𝐸0  ≤  𝐸𝑖), it is found that  

                                              𝐸𝑡𝑟𝑖𝑎𝑙  = ∑ 𝐸𝑗  |𝜆𝑗|
2

  𝑗 ≥  𝐸0  ∑  |𝜆𝑗|
2

𝑗                                       (2.22) 

what is similar to an equation (2.18) 

One of the main concepts of density functional theory is the mathematical framework 

employed above, i.e. rules that assign numerical values to functions, also known as functional. 

A function receives a numerical input and produces a numerical output, whereas a functional 

receives a function and produces a numerical output [27]. 

Equations (2.14 to 2.22) also contain that a search for the lowest energy value when applied 

on all allowed N- electron wave functions will always provide the ground-state wave function. 

Expressed in terms of functional calculus, where 𝜓 → 𝑁 addresses all allowed N-electron 

wave functions, this indicates [21] 

                 𝐸0  = 𝐸[𝜓]𝜓→𝑁
𝑚𝑖𝑛 =  ⟨𝜓|𝐻 ̂|𝜓⟩

𝜓→𝑁

𝑚𝑖𝑛
=  ⟨𝜓|𝑇 ̂ +  𝑉 ̂ +  𝑈 ̂  |𝜓⟩

𝜓→𝑁

𝑚𝑖𝑛
.                           (2.23) 

Due to the vast number of alternative wave functions on one hand and computer power and 

time constraints on the other, this search is essentially unfeasible for N-electron systems. What 

is possible is the restriction of the search to a smaller subset of the possible wave function, as 

it is done in the Hartree-Fock approximation.  
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In the Hartree-Fock approach, the search is restricted to approximations of the N-electron wave 

function by an antisymmetric product of N (normalized) one-electron wave-functions, the so-

called spin-orbitals χ𝑖 (�̅�𝑖 ). A wave function of this type is called Slater-determinant and reads 

[21,28] 

                                  𝜓0  ≈  ∅𝑆𝐷  = (𝑁!)−
1

2  [
χ1(�̅�1 ) ⋯ χ𝑁(�̅�1 )

⋮ ⋱ ⋮
χ1(�̅�𝑁 ) ⋯ χ𝑁(�̅�𝑁 )

]                            (2.24) 

It is important to notice that the spin-orbitals χ𝑖 (�̅�𝑖 ) are not only depending on spatial 

coordinates but also on a spin coordinate which is introduced by a spin function, �̅�𝑖 =  �̅�𝑖 , 𝑠. 

Returning to the variational principle and equation (2.23), the ground state energy 

approximated by a single slater determinant becomes 

𝐸0  =  𝐸[∅𝑆𝐷  ]∅𝑆𝐷  →N
𝑚𝑖𝑛 = ⟨∅𝑆𝐷  |𝐻 ̂|∅𝑆𝐷  ⟩∅𝑆𝐷  →N

𝑚𝑖𝑛
= ⟨∅𝑆𝐷  |𝑇 ̂ +  𝑉 ̂ +  𝑈 ̂  |∅𝑆𝐷  ⟩∅𝑆𝐷  →N

𝑚𝑖𝑛
  (2.25) 

A general expression for the Hartree-Fock Energy is obtained by usage of the Slater 

determinant as a trial function  

                               𝐸𝐻𝐹 =  ⟨∅𝑆𝐷  |𝐻 ̂|∅𝑆𝐷  ⟩ =  ⟨∅𝑆𝐷  |𝑇 ̂ +  𝑉 ̂ +  𝑈 ̂  |∅𝑆𝐷  ⟩                         (2.26) 

For the sake of brevity, a detailed derivation of the final expression for the Hartree-Fock energy 

is omitted. It is a straightforward calculation found for example in the Book by Schwabl [18]. 

The final expression for the Hartree-Fock energy contains three major parts: [21]     

                 𝐸𝐻𝐹 =  ⟨∅𝑆𝐷  |𝐻 ̂|∅𝑆𝐷  ⟩ =  ∑ ⟨𝑖|ћ̂|𝑖⟩𝑁
𝑖 +  

1

2
 ∑ ∑ [⟨𝑖𝑖|𝑗𝑗⟩ − ⟨𝑖𝑗|𝑗𝑖⟩]𝑁

𝑗
𝑁
𝑖                        (2.27) 

with  

                                        ⟨𝑖|ћ̂|𝑖⟩ =  𝜒 
∗

𝑖 
(�̅�𝑖 ) [−

1

2
𝛻𝑖

2⃗⃗ ⃗⃗ ⃗ −  ∑
𝑍𝑘

𝑟𝑖𝑘

𝑀
𝑘=1 ] 𝜒𝑖 (�̅�𝑖 ) 𝑑�̅�𝑖 ,                     (2.28)  

                                            ⟨𝑖𝑖|𝑗𝑗⟩ =  ∬|𝜒𝑖 (�̅�𝑖 )|2 1

𝑟𝑖𝑗
 |𝜒𝑗(�̅�𝑗)|

2 
 𝑑�̅�𝑖 𝑑�̅�𝑗 ,                           (2.29) 

                                ⟨𝑖𝑖|𝑗𝑗⟩ =  ∬ 𝜒𝑖 (�̅�𝑖 ) 𝜒 
∗

𝑗
(�̅�𝑗 ) 

1

𝑟𝑖𝑗
 𝜒𝑗(�̅�𝑗) 𝜒 

∗
𝑖 

(�̅�𝑖 ) 𝑑�̅�𝑖 𝑑�̅�𝑗                      (2.30) 

The first term corresponds to the kinetic energy and the nucleus-electron interactions, ћ 

denoting the single-particle contribution of the Hamiltonian, whereas the latter two terms 
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correspond to electron-electron interactions. They are called Coulomb and exchange integral, 

respectively [21,28]. 

Examination of equations (2.27) to (2.30) furthermore reveals that the Hartree-Fock energy 

can be expressed as a function of the spin orbitals 𝐸𝐻𝐹  = E[{𝜒𝑖}]. Thus, variation of the spin 

orbitals leads to the minimum energy [21]. 

An important point is that the spin orbitals remain orthonormal during minimization. This 

restriction is accomplished by the introduction of Lagrangian multipliers 𝜆𝑖 in the resulting 

equations, which represent the Hartree-Fock equations. For a detailed derivation, the reader is 

referred to the book by Szabo and Ostlund [25]. 

Finally, one arrives at  

                                        𝑓𝜒
𝑖

=  𝜆𝑖𝜒𝑖
                         i = 1,2,…….N                            (2.31) 

with 

             𝑓𝑖 =  −
1

2
∇⃗⃗𝑖

2
 −  ∑

𝑍𝑘

𝑟𝑖𝑘

𝑀
𝑘=1 +  ∑ [𝐽

�̂�
�⃗�𝑖 −  𝐾�̂��⃗�𝑖]

𝑁
𝑖 =  ℎ�̂� +  �̂�

𝐻𝐹
(𝑖),                       (2.32) 

the Fock operator for the i-th electron. In similarity to (2.27) to (2.30), the first two terms 

represent the kinetic and potential energy due to nucleus-electron interaction, collected in the 

core Hamiltonian ℎ�̂�, whereas the latter terms are sums over the Coulomb operators 𝐽�̂� and the 

exchange operators 𝐾�̂�with the other j electrons, which form the Hartree-Fock potential �̂�𝐻𝐹 . 

There the major approximation of Hartree-Fock can be seen. The two-electron repulsion 

operator from the original Hamiltonian is exchanged by a one-electron operator �̂�𝐻𝐹 which 

describes the repulsion on average. [21] 

 

2.6 Limitations and failings of the Hartree-Fock approach 

The number of electrons in an atom or a molecule might be even or odd. The compound is in 

a singlet state if the number of electrons is even and they are all in double occupied spatial 

orbitals, ∅𝑖. Closed-shell systems are what they're called. Open-shell systems are compounds 

with an odd number of electrons and compounds with single occupied orbitals, i.e. species with 

a triplet or higher ground state. These two sorts of systems relate to two different Hartree-Fock 

techniques. The restricted HF technique (RHF) considers all electrons to be coupled in orbitals, 
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whereas the unconstrained HF method (UHF) removes this restriction entirely. Open-shell 

systems may alternatively be described using an RHF method, in which only the single 

occupied orbitals are eliminated, resulting in a limited open-shell HF (ROHF), which is more 

realistic but also more difficult and hence less popular than UHF [21]. 

Closed-shell systems, on the other hand, need an unlimited approach to get good outcomes. 

For example, a system that places both electrons in the same spatial orbital cannot properly 

describe the dissociation of H2 (i.e. the behavior at high internuclear distances), because one 

electron must be positioned at one hydrogen atom. As a result, in HF calculations, technique 

selection is always crucial [28]. 

Kohn states several M = 𝑝5 with 3 ≤ 𝑝 ≤ 10 parameters for an output with adequate accuracy 

in the investigations of the H2 system [29]. For a system with N = 100 electrons, the number 

of parameters rises to 

                                                   𝑀 = 𝑝3𝑁 = 3300 𝑡𝑜 10300 ≈ 10150 𝑡𝑜 10300                      (2.33) 

According to equation (2.33), energy reduction would have to be done in a space with at least 

10150 dimensions, which is well above current computer capabilities. As a result, HF methods 

are limited to situations involving a modest number of electrons (N ≈10). This barrier is 

commonly referred to as the exponential wall because of the exponential component in (2.33) 

[29]. 

Because a multi-electrode wave function cannot be fully characterized by a single Slater 

determinant, the energy determined by HF calculations is always greater than the precise 

ground state energy. The Hartree-Fock limit is the highest precise energy available using HF 

methods [21]. 

The difference between 𝐸𝐻𝐹 𝑎𝑛𝑑 𝐸𝑒𝑥𝑎𝑐𝑡 is called correlation energy and can be expressed 

as[30] 

                                                         𝐸𝑐𝑜𝑟𝑟
𝐻𝐹 = 𝐸𝑚𝑖𝑛 − 𝐸𝐻𝐹                                                                  (2.34) 

The mean-field approximation utilized in the HF method contributes the most to the correlation 

energy. That is one electron moves in the average field of the others, a method that ignores the 

fundamental connection between electron motions. To better grasp what this implies, consider 

electron repulsion at short distances, which is not addressed by a mean-field technique like the 

Hartree-Fock method [21]. 
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Chapter 3 

 

Density functional theory 

 

 

3.1 A new base variable – the electron density 

A general statement concerning the computation of observables has been presented in section 

2.3 about the wave function 𝜓. This section is about a quantity that is computed in a similar 

manner. The electron density (for N electrons) as the fundamental variable of density 

functional theory is stated as [21,31] 

                    n(𝑟) = 𝑁 ∑ ∫ 𝑑�⃗�2 …𝑠1  ∫ 𝑑�⃗�𝑁 𝜓∗(�⃗�1, �⃗�2, … , �⃗�𝑁) 𝜓(�⃗�1, �⃗�2, … , �⃗�𝑁)                     (3.1) 

It's worth noting that the notation in (3.1) takes into account a wave function with spin and 

spatial coordinates. In more detail, the integral in the equation represents the chance of finding 

a certain electron with any spin in the volume element 𝑑𝑟1. Because electrons are 

indistinguishable, N times the integral equals the likelihood of finding any electron there. Other 

electrons with arbitrary spin and spatial coordinates are represented by the wave function 

𝜓(�⃗�1, �⃗�2, … , �⃗�𝑁) [21]. 

If the spin coordinates are not taken into account, the electron density can be described as a 

quantifiable observable that is simply reliant on spatial coordinates [31]. 
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                           n(𝑟) = 𝑁 ∫ 𝑑𝑟2 … ∫ 𝑑𝑟𝑁 𝜓∗( 𝑟1, 𝑟2, … , 𝑟𝑁)𝜓( 𝑟1, 𝑟2, … , 𝑟𝑁),                           (3.2) 

which can e.g. be determined by X-ray diffraction [21]. 

Before providing a method that uses electron density as a variable, make sure it has all of the 

relevant system information. That is to say, it must include information on the electron number 

N as well as the external potential, which is denoted by �̂� [21]. 

Integrating the electron density across the geographical variables yields the total number of 

electrons [21]. 

                                                N = ∫ 𝑑𝑟𝑁 (𝑟).                                                                      (3.3) 

What has to be demonstrated is that the electron density uniquely characterizes the external 

potential, up to a certain additive constant. 

 

3.2 Thomas-Fermi theory  

In quantum equations, the Thomas-Fermi theory was the first to use electron density as a 

variable rather than the wave function. The theory is based on interacting electrons traveling 

in an external potential field, and it offers a very basic explanation of electronic energy in terms 

of electron density distribution n(r): [32] 

                                                   𝑛(𝑟) = 𝛾(𝜇 − 𝑣𝑒𝑓𝑓(𝑟))
3

2                                                        (3.4) 

                                                  𝑣𝑒𝑓𝑓(𝑟) = 𝑣(𝑟) +  ∫
𝑛(𝑟′)

|𝑟−𝑟′|
𝑑𝑟′                                                  (3.5) 

In equation (3.4) 𝜇 is the coordinate-independent chemical potential and r is a constant. The 

variations between external potential (the first term) and the electrostatic energy that is 

generated by the electron density distribution n(r) (the second term) calculate in equation (3.5). 

The number of electrons in a small enough distance element dr is homogeneous and can be 

expressed as n(r) dr. So the energy of the system can be calculated by: 

          𝐸𝑇𝐹[𝑛(𝑟)] =  ∫
3

10
(3𝜋2)

2

3𝑛(𝑟)
5

3𝑑𝑟 +  ∫ 𝑣(𝑟) 𝑛(𝑟)𝑑𝑟 + 
1

2
∫

𝑛(𝑟)𝑛(𝑟′)

|𝑟−𝑟′|
𝑑𝑟𝑑𝑟′,                 (3.6) 

Where the first term is the electronic kinetic energy calculated by integrating the kinetic energy 

density of a homogeneous electron gas. 
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The Thomas-Fermi theory made a significant breakthrough in that it provided a crude form of 

expressing the solution of the many-electron Schrodinger's equation in terms of electron 

density n(r) rather than wavefunction 𝜓, allowing us to characterize the electronic structure of 

the system simply by knowing the electron density n(r). However, because Equation (3.4) is 

predicated on the formulation of a uniform electron gas distribution under an external potential, 

the theory has several flaws. First, the 𝑣𝑒𝑓𝑓 percent gradients were blatantly neglected. As a 

result, the theory is limited to systems with slowly fluctuating densities. Second, kinetic energy 

is described in a very rudimentary manner. Because kinetic energy accounts for a significant 

amount of a system's overall energy, a little inaccuracy of kinetic energy descriptions for each 

location might have severe consequences. As a result, it's only useful for characterizing 

energy's qualitative patterns. The electron-electron interaction is also too simplified. Because 

these interactions were considered conventionally, much of the quantum phenomena were 

overlooked. Chemical bonding is completely ignored by the hypothesis. Although the gradient, 

exchange, and correlation were added subsequently to improve the approach, it was still 

regarded as too crude for electoral structure computation applications [33,34]. 

 

3.3 Hohenberg-Kohn Theory 

Uniqueness: The demonstration of "the ground state density n(r) of a bound system of 

interacting electrons in an external potential v(r) defines this potential uniquely" is the first 

major lemma of the Hohenberg-Kohn theory. The demonstration of this lemma was as simple 

as assuming an electron density n(r), which equates to two non-degenerate ground state 

potentials 𝑣1r and 𝑣2r with ground state wavefunction of Ψ1 and Ψ2, respectively. The ground 

state energies E1 and E2 were computed using two different potentials and wavefunction but 

the same electron density generated E1 + E2< E1 + E2, defying the premise that two states are 

non-degenerate.  As a result, the ground state electron density 𝑛𝑜(𝑟) may be used to calculate 

the ground state [31]. 

Variational Theory: The anticipated value of the Hamiltonian for a trial wavefunction must 

be bigger than or equal to the actual ground state energy, according to variational theory, which 

is particularly beneficial in many quantum methods. If the ground-state electron density 𝑛𝑜(𝑟) 

is known, the ground state energy may be solved using the uniqueness theorem. By layering 

on the Variational Theory, the ground state energy may be calculated by minimizing the energy 
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in terms of electron density n(r). The energy may be expressed as a sum of kinetic energy, 

electrostatic energy, and the energy of a noninteracting electron traveling under a potential 

difference: 

                                           𝐸[𝑛(𝑟)] =  𝑇[𝑛(𝑟)] +  𝑈[𝑛(𝑟)] +  ∫ 𝑉(𝑟) 𝑛(𝑟)𝑑3𝑟,                                (3.7) 

Where the first two components are independent of the external potential V(r) and may be 

represented using an electron density universal functional n(r): 

                                                    𝑇 =  ∫
3

10
[3𝜋2𝑛(𝑟)]

2

3𝑛(𝑟)𝑑𝑟                                                          (3.8) 

                                                         𝑈 =  
1

2
∫

𝑛(𝑟′)

|𝑟−𝑟′|
𝑑𝑟′𝑑𝑟                                                                      (3.9) 

As a result, the Hohenberg-Kohn Theory gave us a way to calculate the energy in terms of 

electron density. However, the approach is inaccurate due to an insufficient representation of 

kinetic energy T [32]. 

 

3.4 Kohn-Sham Equations 

The Kohn-Sham theorem states that if we can discover the real ground-state electron density, 

we can find the lowest energy of the system and consequently the ground state of the system, 

following the Hohenberg-Kohn theorem. The theorem also provides a method for determining 

the density of the ground state. The ground state energy, according to Kohn and Sham, may be 

represented as a function of the charge density: 

                                  𝐸[𝑛(𝑟)] =  𝑇[𝑛(𝑟)] +  
1

2
∫

𝑛(𝑟)𝑛(𝑟′)

|𝑟−𝑟′|
+ 𝑣𝑥𝑐[𝑛(𝑟)]                                                  (3.10) 

where the kinetic energy is the first term, while the interaction between the electron and the 

external potential is the second term. Electron-electron electrostatic interaction and non-

classical exchange-correlation energy are the third and fourth terms, respectively. The electron-

electron interaction is described by the last two terms together. Hartree's self-consisting single-

particle equations for approximating the electrical structure were an inspiration where every 

electron was regarded as moving in an effective single-particle potential, Kohn and Sham then 

reintroduced the single-particle wavefunctions: [35,36] 

                                                    𝑛(𝑟) =  ∑ 𝜓𝑖
∗(𝑟)𝜓𝑖  (𝑟)𝑛

𝑖=1 .                                                       (3.11) 
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The kinetic energy can be written in terms of wavefunctions by: 

                                                 T[n(r)] = −
ℏ2

2𝑚
∑ ⟨𝜓𝑖|𝛻2|𝜓𝑖⟩𝑛

𝑖=1 .                                                  (3.12) 

Equation  

                                                          ∫ 𝜓𝑖
∗(𝑟) 𝜓𝑗  (𝑟)𝑑𝑟 = 𝛿𝑖𝑗                                                     (3.13) 

ensures that the wavefunctions are orthonormal. The solutions to Schrödinger's equation of 

non-interacting particles traveling in an effective potential 𝑣𝑒𝑓𝑓(𝑟) are these wavefunctions: 

                                      −
ℏ2

2𝑚
𝛻2𝜓𝑖(𝑟) + 𝑣𝑒𝑓𝑓(𝑟)𝜓𝑖(𝑟) = 𝜀𝑖𝜓𝑖(𝑟),                                            (3.14) 

 

where                                         𝑣𝑒𝑓𝑓(𝑟) = 𝑣𝑒𝑥𝑡(𝑟) + 𝑣𝑥𝑐(𝑟) +
1

2
∫

𝑛(𝑟′)

|𝑟−𝑟′|
𝑑𝑟′.                                       (3.15) 

The exchange-correlation potential is given by: 

                                                         𝑣𝑥𝑐(𝑟) =
𝛿𝐸𝑥𝑐[𝑛(𝑟)]

𝛿𝑛(𝑟)
                                                                  (3.16) 

So the energy of the system can be written as: 

                                𝐸𝑛 = ∑ 𝜀𝑖 −𝑛
𝑖=1

1

2
∫

𝑛(𝑟′)

|𝑟−𝑟′|
+ 𝐸𝑥𝑐[𝑛(𝑟)] − ∫

𝛿𝐸𝑥𝑐[𝑛(𝑟)]

𝛿𝑛(𝑟)
𝑛(𝑟)𝑑𝑟,                     (3.17) 

Where εis are the eigenvalues of the non-interacting single-particle equation which is supposed 

to be an appropriate term. 

The focus shifted to the particular shape of the exchange-correlation functional at this point. 

In fact, the precision of this approximation factor is so crucial that the actual usage of the 

ground state DFT is totally dependent on it. If each term in the Kohn-Sham energy functional 

was known, we would be able to obtain the exact ground state density and total energy. 

Unfortunately, there is one unknown term, the exchange-correlation (XC) functional (Exc). Exc 

includes the non-classical aspects of the electron interaction along with the component of the 

kinetic energy of the real system different from the fictitious non-interacting system. Since Exc 

is not known exactly, it is necessary to approximate it. 
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3.5 Solving the Kohn-Sham equation 

Self-consistent computations are used to solve the KS equation [37–39]. The potential in the 

KS equation depends on electron density. The electron density, on the other hand, is calculated 

using wavefunctions, which are dependent on the potential. At the start of the calculation, an 

estimate of electron density is made.  

 

 

 

 

 

 

 

 

 

 

 

 

                                 No 

 

                                                                                                

                                                                                Yes       

 

 

 

Figure 3.1: Self-consistent calculations and relaxation for solving the KS equation. 

Initial guess 

n(r) 

 

Calculate effective potential 

𝑉𝑒𝑓𝑓(𝒓) = 𝑉𝑒𝑥𝑡(𝒓) + 𝑉𝐻𝑎𝑟𝑡𝑟𝑒𝑒[𝑛] + 𝑉𝑥𝑐[𝑛] 

Solve KS equation 

[−
ℏ

2𝑚
∆2 + 𝑉𝑒𝑓𝑓(𝒓)] 𝜓𝑖(𝒓) = 𝜀𝑚𝑒𝜓𝑖(𝒓) 

Calculate electron density 

n(r)= ∑ Ψi
∗(𝐫)Ψi (𝐫)𝑁

𝑖=1  

Self-consistent? 

Output quantities 

Potential Energy, Static structure, Born effective 

charges, etc..  
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The KS equation is then solved for each k-point. The diagonalization of the Hamiltonian matrix 

yields eigenvalues and eigenfunctions. Those values and functions are used to determine total 

energy and fresh charge density. If the density and total energy do not converge, the effective 

potential is recalculated using the new density, which is usually a combination of the old and 

new density. As a result, this method is a self-contained calculating method. In addition, the 

forces on atoms must be converged to a sufficiently minimal value for ion and lattice 

relaxation. 

 

3.6 Exchange-correlation potential 

Because the exact shape of the exchange-correlation potential is unknown today, it is the most 

difficult portion of the KS equation to solve. Therefore, there are different approximations to 

it, such as the local density approximation (LDA), generalized gradient approximation (GGA), 

and hybrid functional approach, such as HSE06 [39]. 

 

3.6.1 Local density approximation (LDA) 

The LDA is a simple approach to estimate the exchange-correlation portion and is a first rough 

approximation. It is based on the free homogeneous electron gas hypothesis, which has a 

constant electron density 

                                                   𝜌(𝒓) = 𝜌 =
𝑁

𝑉
                                                                         (3.18) 

Here, N is a number of electrons in the solid with volume V. The one possible expression of 

LDA exchange-correlation energies are given as [40–42] 

                          𝜀𝑥𝑐
𝑔𝑎𝑠(𝜌) = −

3

4
∙

3

𝜋

1

3 ∙ 𝜌
1

3 + {
𝐴𝑙𝑛𝑟𝑠 + 𝐵 + 𝐶𝑟𝑠𝑙𝑛𝑟𝑠 + 𝐷𝑟𝑠  𝑖𝑓 𝑟𝑠 ≤ 1

𝛾 /(1 + 𝛽1√𝑟𝑠 + 𝛽2𝑟𝑠                𝑖𝑓 𝑟𝑠 > 1
              (3.19) 

Here, 𝑟𝑠 = 3/(4𝜋𝜌)
1

3; A, B, C, D, γ, β1 and β2 are parameters [40–42]. According to the LDA, 

the exchange-correlation energy for an electron in a very small tiny volume in a many-particle 

system is equivalent to the exchange-correlation energy for an electron in a free electron gas 

with the same density in the volume (εxc
gas

(ρ(𝐫)) = εxc
gas(𝐫)). The explicit exchange-

correlation energy is given as  
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                                                           𝐸𝑥𝑐
𝐿𝐷𝐴[𝜌] = ∫ 𝜌(𝒓) 𝜀𝑥𝑐

𝑔𝑎𝑠(𝒓)𝑑𝒓                                       (3.20) 

The corresponding exchange-correlation potential is given by 

                                                               𝑉𝑥𝑐
𝑔𝑎𝑠(𝒓) =

𝛿𝐸𝑥𝑐
𝐿𝐷𝐴[𝜌]

𝛿𝜌
                                                         (3.21) 

The generalized gradient approximation Exc
LDA[ρ] is the second family of approximations, in 

which the density gradient is also taken into consideration to calculate the exchange-correlation 

energy. 

The total energy of a solid is reasonably adequately described by both LDA and GGA. 

 

3.6.2 Hybrid functional approach (HSE06) 

Another approximation approach Exc[ρ]is to calculate the exchange energy precisely within 

the Hartree-Fock approximation, then apply an estimate for the correlation energy. The band 

gap energies produced by this exchange-energy approach are often excessively big. It is 

occasionally preferable to use a combination of the exchange-energy approach and the LDA 

or GGA. This is so called hybrid functional approach, where the exchange energy is mixed in 

order to empirically obtain better energies and band gap energies. In HSE06 method, the 

following equation is defined as 

                       𝐸𝑥𝑐
𝐻𝑆𝐸[𝜌] = 𝛼𝐸𝑥𝑐

𝑆𝑅(𝜇) + (1 − 𝛼)𝐸𝑥
𝑃𝐵𝐸,𝑆𝑅(𝜇) + 𝐸𝑥

𝑃𝐵𝐸,𝐿𝑅(𝜇) + 𝐸𝑐
𝑃𝐵𝐸               (3.22) 

Here, the short range (SR) part of the exact exchange Ex
SR is mixed with a short range part of 

the GGA exchange 𝐸𝑥
𝑃𝐵𝐸,𝑆𝑅

 by Perdew, Burke and Erzerhof (PBE) [39]. The correlation part 

of the electron-electron interaction is obtained from the PBE approximation  Ec
PBE . 

Many alternative exchange-correlation potentials exist today. It is still under construction. The 

KS equation has the advantage of being simple to implement additional potentials. However, 

because of the ease of implementation, various potentials exist, which might be viewed as 

inconsistent [39]. 
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3.6.3 The Generalized-Gradient Approximation (GGA) 

It was understood very early that only the local uniform density at each given point is not a 

reasonable approximation for the rapidly changing electron densities of many materials, and 

that the gradient of the density (∇𝑛(𝑟)) needs to be included. A first attempt was the so-called 

gradient-expansion approximations (GEA). The idea behind GEA is to regard LDA as the term 

in a power series expansion of Exc in the density’s spatial variation (described by the derivatives 

of n(r)). The second-order GEA thus uses LDA plus the term of next lowest order in density 

variation, giving a functional of the form 

                               𝐸𝑥𝑐
𝐺𝐸𝐴[𝑛] = 𝐸𝑥𝑐

𝐿𝐷𝐴[𝑛] + ∫ 𝐴𝑥𝑐(𝑛(𝒓))𝑠2 + ∫ 𝐵𝑥𝑐(𝑛(𝒓))𝑞 + ⋯                (3.23) 

Where 𝐴𝑥𝑐(𝑛(𝒓)) and 𝐵𝑥𝑐(𝑛(𝒓)) are dimensionless functions of 𝑛(𝒓), and s and q defines the 

appropriate measure of the density gradient both of which have been expressed on scale-

invariant  form; the dimensionless gradient  

                                             s = 
|𝛻𝑛|

2𝑘𝐹𝑛
=  

|𝛻𝑛(𝒓)|

2(3𝜋2)
1
3𝑛

4
3(𝒓)

=
3

2

4

9𝜋

1

3 |𝛻𝑟𝑠|                                          (3.24) 

and the dimensionless Laplacian 

                                                        𝑞 =
𝛻2

2𝑘𝐹
2𝑛

=
𝛻2𝑛(𝒓)

4(3𝜋2)
2
3𝑛

5
3(𝒓)

                                                         (3.25) 

Because there is no special direction in the uniform electron gas, there can be no term linear in 

∇𝑛. Moreover, terms linear in ∇2𝑛 can be recast as s2 terms via integration by parts, since: 

                                                    ∫ 𝑑𝒓 𝑓(𝑛)𝛻2𝑛 = − ∫ 𝑑𝒓 (
𝜕𝑓

𝜕𝑛
) |𝛻𝑛|2                                   (3.26) 

In application to real systems, the GEA has generally been disappointing, indeed often 

worsened the results of the LDA. The failure of the GEA leads to the development of 

generalized-gradient approximation (GGA). The XC functional is written as a function of the 

local density and the local gradient of the density, usually, as an “enhancement factor” Fxc 

multiplying the homogeneous electron:  

                                          𝐸𝑥𝑐
𝐺𝐸𝐴[𝑛] = ∫ ∈𝑥𝑐 (𝑛(𝒓))𝐹𝑥𝑐(𝑛(𝒓), ∇𝑛(𝒓))𝑑𝒓                                (3.27) 

The enhancement factor is written in terms of rs and the dimensionless density gradient s: 

                                                   𝐹𝑥𝑐(𝑛(𝒓), |∇𝑛(𝒓)|  → 𝐹𝑥𝑐(𝑟𝑠, 𝑠) 
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Gradient-corrected functionals are the simplest extensions of LDA to inhomogeneous systems 

one can think of. GGA found widespread acceptance due to its improved performance. GGA 

functionals are known to satisfy some known conditions that the exact functional should satisfy 

as well [16]. They yield much better atomic energies and binding energies than LDA, at a 

modest additional computational cost [43,44].                                                                                             
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Chapter 4 

 

Results and Discussion 

 

 

4.1 Geometric structure and volume optimization 

Basic input parameters such as lattice constants and Wyckoff positions were mostly obtained 

from prior work for the calculations of structural, electrical, optical, and elastic characteristics 

of cubic NaMCl3 (M =In, Al), with space group of Pm-3m (221) [6]. 

Table 4.1 Optimized lattice parameters and Wyckoff positions for cubic NaMCl3 (M =In, Al).  

Perovskite 

Compounds 

Optimized Lattice 

Parameters (Å) 

Wyckoff Positions 

Atom x y z 

NaInCl3 5.4030 

Na 0 0 0 

In 0.5 0.5 0.5 

Cl 0.5 0.5 0 

NaAlCl3 5.0420 

Na 0 0 0 

Al 0.5 0.5 0.5 

Cl 0.5 0.5 0 
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First, energy v/s volume optimization calculations for all of the examined compounds were 

done to obtain the appropriate precision for all of the studied characteristics. Table 4.1 

summarizes the obtained optimal lattice parameters, as well as the theoretical values and 

Wyckoff locations. NaMCl3 (M =In, Al) compounds have cubic crystal structures in which Na 

atoms are present at corner positions, and the X atom is presented at the body center position, 

while Cl atoms are located at the middle of the edges. The crystal structure of both compounds 

NaInCl3 and NaAlCl3 are same. So we expressed the structure in one common figure. 

Crystalline structures are drawn by using the XCrySDen software [45] and the structure is 

presented in Figure 4.1. For obtaining the values of the parameters for example lattice constants 

at the lowest energy state, we have optimized structures using the PBE-GGA approximation. 

Minimum values for the radius of muffin-tin (RMT) for Na, In, Cl, was taken 2.3, 2.3, 2.3 a.u 

respectively for NaInCl3 material. In case of NaAlCl3 material the RMT values for Na, Al, Cl 

was taken 2.50, 2.32, 2.32 a.u respectively. The angle of cubic perovskite were taken as 90° 

for both materials. 

 

            Figure 4.1: Crystal Structure of cubic NaMCl3 (M =In, Al) 
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        Figure 4.2: Energy v/s volume optimization curves for (a) NaInCl3 and (b) NaAlCl3. 
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For volume optimization, we took the RKMAX value as 8.5, where RKMAX = RMT × KMAX. 

Here RMT represents radius of muffin-tin (MT) radius of the non-overlapping atomic sphere 

which is the smallest size neutral atoms and KMAX represents the largest value of the reciprocal 

lattice vector [6]. Other parameters considered in present calculations include variables such 

as 1000 k-points, GMAX = 12(𝑎. 𝑢. ),−1 lmax = 10.0. To confirm the accuracy of calculations, 

cutoff values for energy, forces, and core and valence state’s separation were kept as 0.0001 

Ry, 1 mRy/a.u. and -6.0 Ry, respectively.  

 

4.2 Self Consistent Field (SCF) calculation 

After volume optimization, we used the optimized lattice parameter from the outputeous file 

for regenerating the structures of NaMCl3 (M =In, Al). Before SCF calculation we initialized 

with appropriate parameters and do the non-magnetic calculation with PBE potential. The 

parameters we used for the initialization of SCF calculation are listed in Table 4.2. 

Table 4.2 Parameter used in SCF (PBE) calculation of NaMCl3 (M =In, Al). 

Perovskite 

Compounds 
Optimized lattice parameter(Å) RMT 

NaInCl3 5.4030 

Na 2.3 

In 2.3 

Cl 2.3 

NaAlCl3 5.0420 

Na 2.5 

Al 2.32 

Cl 2.32 

 

Self-consistent field (SCF) methods include both Hartree-Fock (HF) theory and Kohn-Sham 

(KS) density functional theory (DFT). Self-consistent field theories only depend on the 

electronic density matrices and are the simplest level of quantum chemical models. The RKMAX 

values we used in the calculation for both NaMCl3 (M =In, Al) materials were taken 8.5. The 

energy convergence criteria were 0.0001 Ry for NaInCl3 and 0.0001 Ry for NaAlCl3. We also 

took the k-points value as 1000 and l-max value as 10 for both materials.   

Once the SCF cycle has converged one can calculate various properties like band structure, 

Density of States (DOS), Optical properties, Elastic constants, etc. From the SCF calculation, 

we found band gap, total energy, Fermi energy. These values are listed in Table 4.3. 
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Table 4.3 Calculated band gap (eV), Total energy (eV) and Fermi Energy (eV) of NaMCl3 (M 

=In, Al) using PBE-GGA potential. 

Compounds 
Band gap 

(eV) 

Fermi energy 

(eV) 

Total energy 

(eV) 

NaInCl3 0 0.1176390100 -202192.95517 

NaAlCl3 0 0.2348555241 -48707.925785 

 

 

4.3 Energy band structure 

The quantum-mechanical behavior of electrons in solids is described by a theory or band 

structure.  Electrons in solitary atoms have only a few discrete energies, which may be shown 

as a sequence of distinct lines on an energy-level diagram. We used the most accurate exchange 

and correlation functions to compute structural parameters of perovskite NaMCl3 (M =In, Al) 

materials, as mentioned in the preceding section.  

 

 

Figure 4.3: Estimated Band structure of (a) NaInCl3 and (b) NaAlCl3 
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Calculations are also carried out to identify the energy band gap, electronic response, and 

energy band structures of all the compounds evaluated. Band structure of the compounds 

attained within the framework of PBE-GGA described in Figure 4.3. From the Figure 4.3, we 

see that both the materials have no band gap at the Fermi level. The conduction band crosses 

the Fermi level and enters into the valence band. So the band gap is zero here. We know that 

metal has no band gap at the Fermi level. Generally, we found band gaps in semiconductors 

and insulators. So from figure 4.3, we can say both NaInCl3 and NaAlCl3 are metals. Good 

metal conductors have a zero band gap, which means that these materials can be used to 

produce electrical wires and other electrical devices. Their valence and conduction bands 

overlap at the Γ  points.  

 

4.4 Density of States (DOS) 

The density of states (DOS) is the number of distinct states that electrons can occupy at a given 

energy level or the number of electron states per unit volume per unit energy. This function is 

responsible for bulk properties of conductive substances like specific heat, paramagnetic 

susceptibility, and other transport phenomena. DOS calculations can be used to figure out the 

general distribution of states as a function of energy and the spacing between energy bands in 

semiconductors [46]. 

For detailed investigations of the formation of energy bands, one needs to compute the Density 

of States (DOS). The calculated DOS for compounds NaMCl3 (M =In, Al) are shown in Figure 

4.4. From the above figure 4.4, we see the total density of states and atoms individual 

contributions of NaMCl3 (M =In, Al). In fig 4.4 the conduction band overlaps the Fermi level 

and enters into the valence band region. DOS contribution in the valence band region is higher 

than the conduction band. We get the higher peak of DOS in the valence band region. We plot 

DOS between -8 eV to 6 eV energy range. From the figure 4.4 (a) we can see that in case of 

NaInCl3 the Cl atom contribution is higher than Na and In atom, but in figure 4.4 (b) we can 

see that Na atom contribution is higher than Al and Cl atom. 

In NaMCl3 (M =In, Al) systems, the Cl atom contribution in the DOS is higher than the other 

atoms. The Na atom contribution is very low in the valence band than the conduction band. 

From the Density of States plot, we can say that it is a good metal conductor as these materials 

have no energy gap at the Fermi level. 
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Figure 4.4: Density of States (DOS) of (a) NaInCl3 and (b) NaAlCl3 

 



30 

 

4.5 Optical Properties  

A material's optical characteristics determine how it interacts with light. For optical properties 

calculation, we used k-points as 10000 for both materials. We found the plasma frequency as 

2.984 for NaInCl3 and 3.166 for NaAlCl3. In this section, we discuss the optical properties of 

NaMCl3 (M =In, Al) such as absorption coefficient, optical conductivity, optical reflectivity, 

refractive index, dielectric tensor, and electron energy loss. 

 

4.5.1 The Absorption Coefficient 

The absorption coefficient specifies how far light of a specific wavelength can reach into a 

substance before being absorbed. Light is only poorly absorbed in a material with a low 

absorption coefficient, thus it appears transparent to that wavelength if the substance is thin 

enough. The absorption coefficient is determined by the substance as well as the wavelength 

of the absorbed light. In metal perovskite materials NaMCl3 (M =In, Al) the absorption 

coefficient increases with the increase of energy. Generally, metal conductors have a high 

absorption coefficient. Because light with energy below the band gap does not have enough 

energy to drive an electron from the valence band into the conduction band, semiconductor 

materials show a sharp edge in their absorption coefficient. As a result, there is no absorption 

of this light. The absorption coefficient is not constant for photons with energies above the 

band gap, although it is still substantially dependent on wavelength. The likelihood of 

absorbing a photon is proportional to the probability of a photon and an electron interacting in 

such a way that they migrate from one energy band to the next. Not only electrons with energies 

close to the band gap can interact with the photon as the photon's energy increases. As a result, 

more electrons may interact with the photon, causing it to be absorbed [24]. The absorption 

coefficient, α is related to the extinction coefficient, k by the following formula 

α = 
4πk

λ
 

This is the absorption coefficient equation. Where λ is the wavelength. 

In figure 4.5 we can see the absorption coefficient of NaMCl3 (M =In, Al) compounds. The 

range of photon energies for visible light is 1.63 eV to 3.26 eV. For both NaMCl3 (M =In, Al) 

compounds the absorption coefficient is very weak in the visible light region. So we can say 

that these materials cannot absorb visible light. 
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Figure 4.5: Optical absorption coefficient for NaAlCl3 and NaInCl3 

 

So we can say that these materials cannot absorb visible light. But after the visible light region, 

the absorptivity starts to increase. So both NaMCl3 (M =In, Al)  absorbs mainly UV light. As 

the energy increases the absorptivity also increases in this region. From the figure, we can see 

that NaAlCl3 gives a higher absorption coefficient than NaInCl3. So we can say that, NaAlCl3 

absorbs more light. For metals, the absorptivity increases with the energy. Optical absorption 

provides essential information on the electronic properties of metals.  

 

4.5.2 Optical Conductivity  

Optical conductivity σ (ω) determines the ability of a medium to initiate a phenomenon of 

conduction as the electromagnetic radiations try to propagate through it. Calculations of optical 

properties of NaMCl3 (M = In, Al) perovskite compounds, enable us to precisely explain their 

probable utilization in various optoelectronic applications. Fig-4.6 represents the optical 

conductivity at different energies of perovskites NaMCl3 (M =In, Al) compounds. As 

electronic conduction is a matter of putting electrons in the conduction band, one other way to 
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achieve this goal is to give an electron bound to the atoms enough energy to break the bond 

and set it free to move. 

From figure 4.6, it is clear that the optical conductivity increases as energy increases.  The 

energy between 1.63 eV to 3.26 eV, the conductivity starts to decrease and becomes almost 

zero at 2eV energy, but after the visible range region conductivity increases. At zero energy 

position, we get the highest optical conductivity. Between 8 eV to 10 eV energy, we get the 

highest optical conductivity for both materials. From figure 4.6, we can say that NaAlCl3 

material is a better conductor than NaInCl3 material.  

                                     

Figure 4.6: Optical Conductivity for NaInCl3 and NaAlCl3 

 

 

 



33 

 

4.5.3 Refractive index 

The ratio of the speed of light in a vacuum to the speed of light in the second medium of larger 

density is used to compute the refractive index (also known as the Index of Refraction). The 

letter 'n' is the most popular symbol for the refractive index variable. The greater the deflection 

(or refraction) of a light beam entering or exiting a material, the higher its refractive index. We 

know that the refractive index means how fast light travels through the materials. The 

frequency of light traveling through a medium influences its refractive index (to some extent), 

with the highest frequencies having the greatest values of n. Figure 4.7 gives the relationship 

between the refractive index and the photon energy. From figure 4.7, we can see that both 

NaInCl3 and NaAlCl3 give the almost same result. The refractivity is maximum at 0 eV energy 

and minimum between 0.5 eV to 1.8 eV energy. After 12 eV energy the refractive index starts 

to decrease. 

 

Figure 4.7: Refractive Index for NaInCl3 and NaAlCl3 

 



34 

 

4.5.4 Optical Reflectivity 

This is a measure of a surface's capacity to reflect radiation, equivalent to the reflectance of a 

sufficiently thick layer of material for the reflectance to be independent of thickness. The 

reflectance and reflectivity spectra of each substance determine its potential as a perfect 

absorber. Furthermore, the total absorption (A), refraction (T), and reflectance (R) should equal 

1 for improved optical resonance [6]. The reflectivity of light from a surface depends upon the 

angle of incidence and the plane of polarization of the light. The normal incidence reflectivity 

is dependent upon the indices of refraction of the two media. From figure 4.8, we see that at 

zero energy position the reflectivity is highest but after 0 eV position reflectivity starts to 

decrease and becomes zero at the 2 eV position. After, 2 eV positions the reflectivity again 

starts to increase. As the energy increases the reflectivity also increases after 2 eV energy. So 

from this property, we can say that NaInCl3 and NaAlCl3 are the good metallic reflector. Figure 

4.8 is representing the optical reflectivity of NaMCl3 (M =In, Al) compounds. 

 

               Figure 4.8: Optical reflectivity for NaInCl3 and NaAlCl3 
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4.5.5 Dielectric Function 

The Dielectric Constant is a measurement of a substance's capacity to store electrical energy 

in an electric field. The dielectric constant is a complex quantity that may be represented as  

ε = ε1 + iε2, where ε1 and ε2 are the real and imaginary components of the dielectric constant, 

respectively. The optical response of the material to an electromagnetic field is described by 

the dielectric function [47]. Both the real and imaginary dielectric tensor for NaInCl3 and 

NaAlCl3 obtained from PBE-GGA potential. Both NaMCl3 (M = In, Al) compounds give the 

almost same graph. From figure 4.9, we can say that NaMCl3 (M = In, Al) compounds have 

negative real dielectric tensors before 2 eV energy.  So, we cannot use these compounds to 

store electrical energy. After 2 eV energy, the real dielectric tensors starts to increase and we 

get positive value of real dielectric tensor. Again the real dielectric tensor starts to decrease 

after about 9 eV energy.  

 

 

 Figure 4.9: Real dielectric tensor for NaInCl3 and NaAlCl3 
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From fig 4.10, we can see that the imaginary dielectric tensor decreases suddenly between 0 to 

3 eV energy. After about 3 eV energy, the imaginary dielectric tensor starts to increase and 

between 8 eV to 10 eV we can see a sharp peak.  

 

  Figure 4.10: Imaginary dielectric tensor for NaInCl3 and NaAlCl3 

 

4.5.6 Electron Energy Loss 

The Electron Energy Loss (EEL) represents the probability that an incident electron loses 

energy and transfer a momentum per unit path length traveled in a solid.  Electron energy 

spectroscopy is the utilize of the energy distribution of electrons that pass through a thin sample 

to analyze the content of the sample and produce images with unique contrast effects. Because 

the EEL is directly connected to the dielectric function, it may be used to determine a variety 

of dielectric characteristics of materials. Unfortunately, because the EEL is difficult to detect 
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experimentally, experimental data is not always accessible. Optical reflection and transmission 

measurements are commonly used to determine the EEL for zero momentum transfer. The 

energy loss function is directly related to the dielectric function, and hence many dielectric 

properties of materials can be extracted from the determination of the EEL. Unfortunately, 

experimental data for the EEL is not always available because it is difficult to determine 

experimentally. The EEL for zero momentum transfer is usually obtained from optical 

reflection and transmission measurement. 

     

Figure 4.11: Electron energy loss for NaInCl3 and NaAlCl3 

The energy loss function in all directions starts from zero (0) at 0 eV. From figure 4.10, we 

can see that the graph is almost the same for both materials. Between 1 eV to 2 eV, we have 

the highest energy loss of about 5. Almost 90% photon energy is needed to be absorbed by the 

electron for going to the next stable state. 
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4.6 Elastic Properties 

The mechanical characteristics of NaMCl3 (M = In, Al) are investigated using elastic constant 

calculations. The nature of bonding forces and mechanical stabilities is influenced by elastic 

constants. From the strain as a function of volume, the elastic constants C11, C12, and C44 were 

determined. The IRelast package, as implemented in WIEN2k, is used to examine elastic 

constants in this report. The following are the born stability conditions for cubic crystals [48–

51]: 

(C11 – C12) > 0, C11 > 0, C44 > 0, (C11 + 2C12) > 0 

The estimated elastic constants satisfy the Born stability criterion, and these elastic constants 

are listed in Table 4. C11 represent resistance in x-direction under linear compression [52]. 

Similarly, C44 indicates the resistance to shear deformation under applied shear stress. In 

general, we state that C44 is concerned with the hardness of the material [53]. For both 

examined compounds, the value of C12 is negative, which shows the reduction in transverse 

expansion when stress is applied. From elastic constants (C11, C12, C44), we can easily 

determine the elastic moduli, such as Young's modulus (Y), bulk modulus (B), and shear 

modulus (G), by using Voigt-Reuss-Hill approximation [54,55].  

From elastic constants (C11, C12, C44), we can easily determine the elastic moduli, such as 

Young's modulus (Y), bulk modulus (B), and shear modulus (G), by using Voigt-Reuss-Hill 

approximation. 

                                                                 B =
1

3
(C11 + 2C12)                                                         (4.6.1) 

                                                                      Y =
9BGv

3B+Gv
                                                             (4.6.2) 

                                                                  G =
1

2
(Gv + GR)                                                   (4.6.3) 

Where, GV and GR are the Voigt shear modulus and Reuss shear modulus, respectively, and 

are determined by using the following relation [54]. 

                                                             Gv =
1

5
(C11 − C12 + 3C44)                                      (4.6.4) 

                                                             GR =
5C44(C11−C12)

3(C11−C12)+4C44
                                               (4.6.5) 
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Bulk modulus is used to calculate the resistance to volume changes under pressure [56] and 

maybe simply computed using elastic constants from Equation (4.6.1). Furthermore, Young's 

modulus (Y) is used to predict a material's stiffness whereas shear modulus (G) is a proportion 

of resistance to reversible deformation under shear stress that helps to define a material's 

hardness more precisely than the bulk modulus. Pugh's ratio (B/G) is used to determine a 

material's brittleness or ductility [54]. If the B/G ratio is more than 1.75, the compound is 

ductile; otherwise, it is brittle. As a result, both compounds are ductile in our circumstances 

[56]. All the calculated elastic moduli are listed in Table 4.4. 

Table 4.4 Calculated elastic constants, C11, C12 and C44 (in GPa) and Bulk modulus B(GPa), 

Young modulus Y(GPa), Shear modulus G(GPa), Poisson’s ratio(v), Cauchy pressure (𝐶𝑝 =

𝐶12 − 𝐶44) (GPa), Pugh’s ratio (B/G) for NaMCl3 (M = In, Al) at zero pressure.  

Compounds C11 C12 C44 B Y G v 𝐶𝑝 B/G 

NaInCl3 48.37 14.89 6.21 26.05 25.07 9.36 0.34 8.68 2.78 

NaAlCl3 50.99 16.72 9.20 28.14 31.14 11.84 0.31 7.51 2.37 

 

Thermo dynamical parameters and Debye temperature (θD), which are used to depict thermal 

expansion, melting point, and specific heat capacity, are also associated with mechanical 

qualities of a material [57]. Debye temperature is connected to the natural frequency of the 

elastic lattice vibrations and can be determined by averaged elastic-wave velocity (vm) as 

                                                          θD =
ℎ

𝑘
[

3𝑛

4𝜋
(

𝑁𝐴𝜌

𝑀
)]

1

3
𝑣𝑚                                                           (4.6.6) 

Here, n is the number of atoms in the molecule, 𝑁𝐴 is Avogadro number, and M is the molecular 

weight. Average sound velocity 𝑣𝑚 can also be explained in terms of transverse and 

longitudinal wave velocities by using the following relation [57,58]. 

                                                           vm = [
1

3
 (

2

vl
3 +

1

vt
3)]

−
1

3
                                               (4.6.7)    

Furthermore, transverse wave velocity vt and longitudinal wave velocity vl can be determined 

by using G and B values as vt = [
𝐺

𝜌
]

1

2
 and   vl = [

3𝐵/4𝐺

𝜌
]

1

2
, respectively [59]. The calculated 

Debye temperature along with vm, vl, and vt are shown in Table 4.5. 
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Another essential thermodynamic component, the melting temperature, has been found for 

these perovskites using Equation (4.6.8) and is given in Table 4.5 based on the data of elastic 

constants [60].      

                                       Tm = [553(K) + (5.911)C12]GPa ± 300K                                       (4.6.8)        

 

Table 4.5 Calculated longitudinal (vl), transverse (vt) and average (vm) wave velocities; 

Debye temperature (θ𝐷); and melting temperature (Tm) for NaMCl3 (M = In, Al) at zero 

pressure.  

Compounds vl(m/s) vt(m/s) vm(m/s) θ𝐷(K) Tm(K) 

NaInCl3 3871.58 1907.97 2142.18 201.847 838.9015±300 

NaAlCl3 4656.85 2417.45 2705.62 273.191 854.3568±300 

 

From Table 4.4 and Table 4.5 we can say that our studied materials are metallic. Between 

NaMCl3 (M = In, Al) compounds NaAlCl3 is more metallic than NaInCl3 because NaAlCl3 

have higher melting temperature, higher velocity, higher Debye temperature and higher value 

of moduli than NaInCl3. 
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Chapter 5 

 

Conclusion 

 

 

In this report, the maximum precision full-potential linearized augmented plane wave (FP-

LAPW) approach as implemented in the WIEN2k code is used to do density functional studies 

for compounds NaMCl3 (M = In, Al). The Perdew-Burke-Ernzerhof Generalized-Gradient-

Approximation and correlation potential were used to perform detailed behavior analysis on 

the studied compounds, including structural optimization, band structure, the density of states, 

real and imaginary dielectric tensor, optical absorption, optical conductivity, reflectivity, 

refractivity spectra, electron energy loss elastic properties. Structural properties demonstrated 

that these compounds are cubic and have lattice constants of 5.4030 Å for NaInCl3 and 5.0420 

Å for NaAlCl3. Similarly, electronic properties revealed that studied compounds are good 

metallic conductors that have no band gap. The Density of States also revealed the metallic 

nature of these compounds. The absorption coefficient, conductivity, and reflectivity showed 

that our studied compounds are metallic in properties. Elastic properties demonstrated that 

these compounds have a high melting temperature, high transverse, and longitudinal wave 

velocities. From Pugh’s ratio, we can say that these metals are ductile. So from the above 

properties, we can conclude that our studied compounds NaMCl3 (M = In, Al) are good 

conductors and suitable for electrical wires.  
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