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Abstract

TiO2 has been widely studied because of its fascinating general properties in a wide range of

fields with chemical changes, photo-catalysis, medication agent, environmental purification,

and nano-fluid application which has a great effect on the standard of life. Because of its

excellent optical properties, whiteness, and high refractive index, it has been widely used as

sunscreen and white pigment for a long time. It is also used for detecting high-temperature

ferromagnetic semiconductors. We follow the Full Potential Linear Augmented Plane Wave

(FP-LAPW) method for our calculation based on Density Functional Theory (DFT). We

use both PBE and mBJ potential for solving Kohn-Sham equation. In our current study, we

tried to find out the electronic and optical properties of rutile and anatase TiO2 and then

we dope 25% Nb within rutile TiO2. We tried to make a comparison between the changes

in electronic and optical properties of rutile and Ti0.75Nb0.25O2. TiO2 is mainly a UV light

absorber. When Nb is doped within pristine TiO2, its absorptivity and conductivity increases

in the visible region. TiO2 shows non-metallic behavior when it is pure. For 25% dopant

Nb, it turns into metal. It can be used to prepare highly efficient UV-absorbing thin-film

coatings for the protection of organic materials against photodegradation.
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Chapter 1

Introduction

Titanium dioxide conjointly called titanium (IV) compound also called Titania belongs to

the family of transition metal oxides, formula TiO2 [1]. It has been widely studied, thanks

to its fascinating general properties in a wide range of fields together with chemical change,

photo-catalysis, and medication agents that have an effect on the standard of life. TiO2 has

been famed as a semiconductor with photo-catalytic activities and incorporates a pleasant

potential for applications like dye hypersensitive cell [2, 3], environmental purification [4, 5]

and nano-fluid applications [6, 7]. It’s principally utilized in the shape of nanoparticles in

suspension for top chemical action extent and activity [9]. Being a photo-catalyst material,

TiO2 has been necessary for numerous serious environmental and pollution challenges [10].

Pigment nanoparticles are bright with a high index of refraction (η = 2.4) that makes them

appropriate for trade addressing dentifrice; reducing the toxicity of dyes and pharmaceu-

tical drugs; wastewater treatment; copy of silkworm; area applications; coatings, papers,

inks, plastics, food product, cosmetics, and textile. 3 crystalline phases of titanic oxide, are

anatase (tetragonal), rutile (tetragonal), and brookite (orthorhombic) during which brookite

has no industrial price. Thanks to their self-improvement and antifogging property, they’re

employed in the preparation of cloths, windows, tiles, and anti-fogging automobile mirrors.

TiO2 nanoparticles conjointly function surroundings sanitizing agent. The applications of

nanoparticles synthesized by biological approach are going to be advantageous for the indus-

tries; surroundings and agriculture. The biogenesis of titanic oxide nanoparticles has gained

wide interest among researchers thanks to its price effective, eco-friendly, and duplicatable
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Introduction

approach. The sol-gel route remedy of the titanic oxide from the surroundings is a vital step

and it is often achieved by victimization physical processes like geological phenomenon and

filtration.

The biogenesis of titanic oxide nanoparticles is often employed in comparison to chemi-

cal synthesis. The anatase and mineral structure are the foremost vital phases for TiO2.

Their optical, electrical, and structural properties are often measured with varied methodol-

ogy however their theoretical investigation takes place in terms of density-functional-theory

(DFT) approaches. Thanks to its achromatic color and robust interesting capabilities of ac-

tinic ray, TiO2(rutile) has been used as a sun blocker. It’s conjointly accustomed to building

magnetism semiconductors (at high temperatures). It has enormous potential for spintronic

applications. Therefore, researchers have studied it intensively to know its chemical and

physical properties and to search out a lot of applications in varied fields. To perform our

calculation we use FP-LAPW method within the DFT [12,13], as implemented in WIEN2k

package [53]. To do our calculation we use the mBJ approximation [14,15] as the exchange-

correlation potential. For comparison we also use GGA (PBE version) [16] approximation.

From the 19th century, DFT is the mainstay in the calculation of electronic structure in

solid-state physics. Because this theorem uses approximate functionals (function of a func-

tion) which maintains the balance between accuracy and a computational result of a given

problem. The problems which we can not solve analytically, we use computers and numerical

methods to solve. DFT had started its journey in 1926 with Thomas-Fermi’s theory. But

present days DFT is not the same. The modern DFT was born in 1965 with Kohn- Sham

equation. By introducing orbitals, they get 99 percent of the kinetic energy right to get accu-

rate n(r) and only need to approximate a small contribution. In the same year, Kohn-Sham

also suggests Local Density Approximation (LDA) and Gradient expansion approximation.

In 1993, more modern functionals (such as GGA and hybrids) are found to be usefully cor-

rect for thermochemistry. For the contribution in DFT, in 1998, Kohn and Pople win the

Noble prize in Thermochemistry. After that DFT is used in material science, geology, soil

science, astrophysics, protein folding, etc. It is mostly used in finding the electronic and

optical properties of a many-body system.

In this report, we start by introducing TiO2 in the first chapter. In this chapter, we have

discussed what is TiO2, What is its importance, and why we are investigating it. In chapter

2 we discussed the basic quantum mechanics which begins with the wave function. This
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section contains the article about electron density, Schorödinger equation, time-dependent

and independent Schrödinger equation, Hartree Fock approach, and its limitations.

Chapter 3 contains the theoretical investigation of Density Functional Theory (DFT). We

start with the many-body quantum system then reduce it with the Born-Oppenheimer ap-

proximation. We have discussed Thomas-Fermi Dirac approximation, Hohenberg- Kohn

Theorem, Spin density functional theorem, GGA, LDA+U method, Kohn-Sham equation,

and how the Kohn-Shan equation can be solved. In chapters 4 and 5, the calculation part

of this project is presented. Firstly we find the structural and optical properties of TiO2.

Then we doped it with 25% Nb and calculate its properties which we present in chapter 5.

We calculate the Bandstructure, The Density of State and Optical properties of TiO2 and

Nb-doped TiO2. We have done the volume optimization calculation, energy convergence

analysis, and Spin polarization calculation of Nb-doped rutile TiO2. And in chapter 6 we

discussed the overall summary of this report.

3



Chapter 2

Basic Quantum Mechanics

2.1 Schrödinger equation

In 1920, Erwin Schrödinger describe the ‘matter wave’, where de Broglie’s relations are used

to describe plane waves hypothetically. Which gives the simplest Schrödinger equation which

is called time-dependent Schrödinger equation [20].

i~
∂

∂t
Ψ(~r, t) = ĤΨ(~r, t) (2.1)

For a single particle,

Ĥ = T̂ + V̂ = − ~2

2m
~∇2 + V (~r, t) (2.2)

Where Ĥ is the Hamiltinoan, T̂ is the kinetic energy term and V̂ represents the potential

energy term. And the equation represents the time dependent Schrödinger equation.

i~
∂

∂t
Ψ(~r, t) = [− ~2

2m
~∇2 + V (~r, t)]Ψ(~r, t) (2.3)

For N particle in three dimensional space, the Hamiltonian becomes

Ĥ =
N∑
i=1

p̂2i
2mi

+ V (~r1, ~r2, ....~rN , t) = −~2

2

N∑
i=1

1

mi

+ V (~r1, ~r2, ....~rN , t) (2.4)

4
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So the Schrödinger equation can be written in the form of

i~
∂

∂t
Ψ(~r1, ~r2, ....~rN , t) = [−~2

2

N∑
i=1

1

mi

∇2
i + V (~r1, ~r2, ....~rN , t)]Ψ(~r1, ~r2, ....~rN , t) (2.5)

2.2 Time independent Schrödinger Equation

We know the simplest time dependent Schrödinger equation is

Ĥψ(~r1, ~r2, ....~rN , t) = Eψ(~r1, ~r2, ....~rN , t) (2.6)

The above equation can be written in the form of,

Ψ(~r1, ~r2, ....~rN , t) = ψ(~r1, ~r2, ....~rN)τ(t) = ψ(~r1, ~r2, ....~rN).e−iωt (2.7)

By seperating the spatial and temporal part [21] of the wave function (using seperation of

variables method) we get,

Ĥψ(~r1, ~r2, ....~rN) = Eψ(~r1, ~r2, ....~rN) (2.8)

This is the general Eigenvalue equation. The solution of the time independent Schrödinger

equation represents the standing wave which also called stationary wave. Time independent

Schrödinger equation is more easier to solve than the time dependent equation.

Using many body Hamiltonian, the Schrödinger equation becomes,

[−~2

2

N∑
i=1

1

mi

∇2
i + V (~r1, ~r2, ....~rN)]Ψ(~r1, ~r2, ....~rN) = Eψ(~r1, ~r2, ....~rN) (2.9)

Where the Hamiltonian itself has no time depedency. So the potential is also time indepen-

dent.

2.3 Wave function

We know that the first and formost postulate of basic quantum mechanics is that “the state

of a particle is compleatly described by it’s wave function(time independent)”, that is, the

wave function contains all the necessary informations about a particle’s state. Quantum

5
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mechanically it is denoted by Ψ . Basically it has no physical meaning. The square of it’s

modulas gives the probability of finding a particle in a given region. The properties of a

valid wave function are:

In order to avoid infinity probabilities, ψ must be finite everywhere. In order to avoid multi-

ple values of the probability ψ must be single valued. For finite potentials, ψ and ∂ψ
∂x

must be

continious. This is required because the second order derivative term in the wave equation

must be single valued.(There are exceptions to this rule when V is infinity). In order to

normalize the wave functions, ψ must approach zero as x approaches ±∞ The motion of

Quantum particle can be explained with Ψ when operated with Schrödinger Equation. The

product of Ψ ∗ and Ψ represent the probability density function [17,19]. Where Ψ∗ is called the

complex conjugate of Ψ. The probability of finding a particle in whole space is unity. That is,

∫
ΨΨ ∗dv = 1 (2.10)

This is called normalization condition. Wave function must be continious over the full spatial

range and square-integratable. [18]

2.4 The Many-Body System and Born-Oppenheimer

Approximation

In case of a many body system containing nucli and electrons, tha Hamiltonian can be

written as,

Htot = −
∑
I

~2

2mI

∇2
RI
−
∑
i

~2

2me

∇2
ri

+
1

2

∑
I,J
I 6=J

Z1ZJe
2

|RI −RJ |
+

1

2

∑
i,j
i 6=j

e2

|ri − rj|
−
∑
I,i

Z1e
2

|RI − ri|
(2.11)

The first term
∑

I
~2
2mI
∇2
RI

of the above equation represents the kinetic energy of the Nu-

cli. Second term
∑

i
~2
2me
∇2
ri

represents the kinetic energy of the electrons. Third term

1
2

∑
I,J
I 6=J

Z1ZJe
2

|RI−RJ |
is for the potential energy of nucli- nucli coulonb interaction. Fourth term

1
2

∑
i,j
i 6=j

e2

|ri−rj | is for the potential energy of electron electron coulomb interaction and the last

term
∑

I,i
Z1e2

|RI−ri|
represents the potential energy of nucli- electron coulomb interaction.

6
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For a system, time independent Schrödinger equation becomes,

HtotΨ({RI}{ri}) = EΨ({RI}{ri}) (2.12)

where,

Ψ({RI}{ri})= total wave function of the system. The solution of this equation gives us

a 2nd order differential equation which is still impossible to solve. So in 1927, a so called

approximation was made by Born and Oppenheimer [23]. As we know the nucli is slower

and heavier than the electrons. We can seperate the movement of electrons and nucluos.

When the nucli is considered to be fixed the total Ψ can be written as,

Ψ({RI}{ri}) = Θ({RI})φ({ri}{RI}) (2.13)

where,

Θ({RI}) = position of the nucli

φ({ri}{RI})= position of the electrons

With Born- Oppenheimer approximation equation 2.12 can be written as,

HeΦ({ri}{RI}) = V ({RI})φ({ri}{RI}) (2.14)

where,

He = −
∑
i

~2

2me

∇2
ri

+
1

2

∑
I,J
I 6=J

Z1ZJe
2

|RI −RJ |
+

1

2

∑
i,j
i 6=j

e2

|ri − rj|
−
∑
I,i

Z1e
2

|RI − ri|
(2.15)

and

[−
∑
I

~2

2mI

∇2
RI

+ V ({RI})]θ({RI}) = E ′θ({RI}) (2.16)

The eigenvalues of V ({RI}) depends on the position of the nucli. By solving equation 3.5

we can find V and putting this in above equation motion of the nucli can be obtained.

The importance of Born- Oppenheimer approximation is the seperation of the movement of

the nucli and electrons. Now we can take the electrons moving in a static external potential

Vext(r) formed by the nucli, which is the starting point of DFT.

7
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2.5 Hartree-Fock approach

The Hartree-Fock (HF) approach is the first standard approach to many body system which

was applied in 1930 by Fock to atoms. The problems which are not possible to solve anal-

itycally of many body problems, this theory gives a suitable strategy to approximate it. It

is as similar as the Least Action Principle (Classical Mechanics).

For now we have the interest only on the electronic schrö dinger equation. Therefore we get,

Ĥ ≡ Hel, Ê ≡ Eel.

The energy (observable) correspond to the general Hamiltonian operator can be calculated

as,

E =< Ĥ >=

∫
d~r1

∫
d~r2...

∫
d~rNψ

∗(~r1, ~r2, ...~rN)Ĥψ(~r1, ~r2, ...~rN) (2.17)

If we take a wave function as a trial, the energy obtained is not the same as the actual ground

state wave function. Actual ground state energy is always lower than the obtained energy.

If trial wave function is equal as the ground state wave function, the energies in both cases

are equal.

Etrial ≥ Eo (2.18)

with

Etrial =

∫
d~r1

∫
d~r2...

∫
d~rNψ

∗
trial(~r1, ~r2, ...~rN)Ĥψtrial(~r1, ~r2, ...~rN) (2.19)

and

Eo =

∫
d~r1

∫
d~r2...

∫
d~rNψ

∗
o(~r1, ~r2, ...~rN)Ĥψo(~r1, ~r2, ...~rN) (2.20)

With Dirac’s Bra-ket notation [22], above equation can be written as,

〈ψtrial|Ĥ|ψtrial〉 = Etrial ≥ Eo = 〈ψo|Ĥ|ψo〉 (2.21)

2.6 Limitations of Hartree-Fock approach

When the even number of electrons are located in double occupied spatial orbital, it is called

that the compound is in singlet state. It also called closed-shell system. Again having odd

number of electrons (compound with single occupied orbital) is called triplet state. It also

called open shell system. This two types of system gives us two different approaches of

8



Basic Quantum Mechanics

Hartree-Fock methood.

In restricted HF (RHF) methood, all electrons are considered to be paired where as in UHF

method, this restriction is lifted totally.

The size of the investigated system is a limiting factor for calculation. Kohn states M=p5

with 3 ≤ p ≤ 10 parameters for the result with sufficient accuracy in investigation of H2

system. For N=100,

M = p3N = 3300to10300 ≈ 10150to10300 (2.22)

Above equation states that, the minimization of energy would have to be performed at least

10150 dimension. HF method are restricted to systems with small number of electrons.

9



Chapter 3

Density Functional Theory (DFT)

3.1 Thomas-Fermi approximation

The original DFT in quantum system is the method of Thomas [24] and Fermi [25] which was

proposed in 1927. But their approximation was not accurate enough for todays electronic

structure determination. The kinetic energy of the system of electrons was approximated

as the explicit functional of density and taken as non-interactive electron in a homogeneous

gas with equal density to local density at any given point. Exchange and correlation among

electrons was nglected in Thomas and Fermi model.

In 1930, it was extended by Dirac [26] which is still in use today. This drives to the energy

functional for electrons in an external potential Vext(r)

ETF [n] = C1

∫
d3rn(r)5/3 +

∫
d3Vextn(r) +C2

∫
d3rn(r)4/3 + 1/2

∫
d3rd3r′

n(r)n(r′)

|(r − r′)
(3.1)

where the first term is the local approximation to the kinetic energy with C1 = 3
10

(3π2)2/3 =

2.871au, the third term is the local exchange with C2 = −3
4
( 3
π
)1/3 and the last term is the

classical electrostatic Hartree energy.

The ground state density and energy can be written as,

∫
d3rn(r) = N (3.2)
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The solution of above equation can be found as, (using the methood of Lagrange Multiplier)

ΩTF [n] = ETF [n]− µ
∫
d3rn(r)−N (3.3)

Where, µ =Lagrangian multiplier, which denotes the Fermi energy. For small variations in

density δn(r), the condition for stationary point is,

∫
d3r(ΩTF [N(r) + δn(r)]− ΩTF [n(r)])→

∫
d3r(

5

3
C1n(r)2/3 + V (r)− µ)δn(r) = 0 (3.4)

where V (r) = Vext(r) + VHartree(r) + Vx(r) is the total potential. From the above equation

the functional is stationary if and only if the potential and density satisfies the relation

1

2
(3π2)2/3 + V (r)− µ = 0 (3.5)

The density functional theory is attractive because of the fact that one equation for the

density is simplier than the many body Schrödinger equation which contains 3N degrees of

freedom for N electrons. The approximation with which the Thomas-Fermi approach starts

that are too crude, essential chemistry and physics are missing such as binding of nucleus

and shell structures of atoms etc. Thus it fails to reach the goal of a useful description of

electrons in matter.

3.2 Hohenberg-Kohn Theorem

The formulation of density functional theory as an exact theory of many body system was

the approach of Hohenberg and Kohn [27]. As we all know, the ground state energy and

ground state wave function can be determined by minimizing E|ψ| (energy functionals) for

an electronic system described by the Hamiltonian. But in case of many electron system(N

electron) N and v(r) describe all the properties for ground state. The discussion in this report

is confined only for non degenerate ground state. The theory is based upon two theorems.
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3.2.1 Theorem 1

Statement : The ground state energy E is a unique functional of the electron density.

E = E[n(r)] (3.6)

Proof: We know that the ground state particle density is n(r) for a system and Vext(r) is the

external potential for the system. The proof is based on minimum energy principle. Suppose

we have different two potential Vext(r) and V ′ext(r), which is different from each other by a

constant but lead to the same ground state density n0(r) For that we will get the different

Hamiltonian H and H ′ and different ground state wave functions.

ĤΨ = E0Ψ (3.7)

Ĥ ′Ψ′ = E ′0Ψ
′ (3.8)

Since Ψ′ is not the ground state of Ĥ. It follows that

E0 < 〈Ψ′|Ĥ|Ψ′〉 (3.9)

< 〈Ψ′|Ĥ ′|Ψ′〉+ 〈Ψ′|Ĥ − Ĥ ′|Ψ′〉 (3.10)

< E ′0 +

∫
n0(r)[Vext(r)− V ′ext(r)]dr (3.11)

Similarly,

E ′0 < 〈Ψ|Ĥ ′|Ψ〉 (3.12)

< E0 +

∫
n0(r)[V

′
ext(r)− Vext(r)]dr (3.13)

By adding equation 3.17 and 3.19 we get,

E0 + E ′0 < E ′0 + E0 (3.14)

As the Hamiltonian is fully known, except for a constant shift of energy, it says that the

many body wavefunction for all state are determined. Therefore all the properties of the

12
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system are completely determined if and only if the ground state density is known. [28]

3.2.2 Theorem 2

Statement: If the functional E[n(r)] is known, the exact ground state energy and density

can be fully determined.

Proof: The Universal functional can be written as,

F [n(r)] ≡ T̂ [n(r)] + Eint[n(r)] (3.15)

where,

T̂ [n(r)] = kinetic energy

Eint[n(r)] = interaction energy of the particles

The energy functional E[Ψ′] ( according to variational principle)

E[Ψ′] ≡ 〈Ψ′|T̂ + V̂int + V̂ext|Ψ′〉 (3.16)

When Ψ′ = Ψ0, it has a global minimum value with a constant that the total number of

particles are conserved. According to HK theorem 1 Ψ′ must correspond to the ground state

whose particle densityis n′(r) and external potential is V ′ext(r). Then E[ψ′] is a functional of

n′(r). According to the variational principle,

E[Ψ′] ≡ 〈Ψ′|T̂ + V̂int + V̂ext|Ψ′〉 (3.17)

= E[n′(r)] (3.18)

=

∫
n′(r)V ′ext(r)dr + F [n′(r)] (3.19)

> E[ψ0] (3.20)

=

∫
n0(r)Vext(r)dr + F [n0(r)] (3.21)

= E[n0(r)] (3.22)

Hence, Energy functional E[n(r)] ≡
∫
n0(r)Vext(r)dr + F [n0(r)] evaluats for the correct

ground state density n0(r) is lower than the value of the function of any other density n(r).

By minimizing the total energy functional with respect to the variations in the density n(r),

one could find the exact ground state density and energy. [29]
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3.3 Kohn-Sham Equation

Hohenberg and Kohn framework is not very usefull yet in actual calculation. The second

Hohenberg-Kohn theorem is the only possibility for the minimization of energy. An example

of an iterative approachis the Hartree equation for self consistent single particle [38,39]. The

Hartree equation is clearly a wavefunction based equation and it is not directly related to

Hohenberg and Kohn. Hartree’s approximation says that every electron moves in an effective

single particle potential of the form of,

vH(~r) = − Z
|~r|

+

∫
n(~r)

|~r − ~r′|
d~r (3.23)

where,

− Z
|~r|= attractive coulomb potential of a nucleus with an atomic number Z.∫ n(~r)
|~r−~r′|d~r = correspond to the potential caused by the mean electron density distribution

n(~r).

n(~r) can be expressed in terms of the single particle wave functions,

n(~r) =
M∑
j=1

|φj(~r)|2 (3.24)

According to the Pauli exclusion principle, the sum of above equation runs over the lowest

eigenvalues. For single particle, 3N-dimensional Schrödinger equation can be written as,

[−1

2
~∇2 + vH(~r)] φj(~r) = εjφj(~r) j = 1, ...., N (3.25)

Therefore Khon and Sham investigated the DFT applied to a system of N non-interacting

electrons in an external potential. The expression for the energy of such a system is,

Ev(~r)[n
′(~r)] ≡

∫
v(~r)n′(~r)d~r + Ts[n

′(~r)] ≥ E (3.26)

where,

n′(~r) = v respectable density for non interacting electrons

Ts[n
′(~r)]= kinetic energy of the ground state of those non-interacting electron [38]
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In case of non-interacting electron, the Euler-Lagrange equation [40] can be written as,

δEv[n
′(~r)] ≡

∫
δn′(~r)[v(~r) +

δ

δn′(~r)
Ts[n

′(~r)]|n′(~r)=n(~r) − ε]d~r = 0 (3.27)

where,

n′(~r)= exact ground state density for the potential v(~r)

ε= The Lagrangian multiplier to ensure particle density conservation.

For such a system the total ground state energy and particle density can simply be written

as,

E =
N∑
j=1

εj (3.28)

and

n(~r) =
N∑
j=1

|φj(~r)|2 (3.29)

For an interacting case the construction of Eular-Lagrange equation becomes,

δEv[n
′(~r)] ≡

∫
δn′(~r)[veff (~r) +

δ

δn′(~r)
Ts[n

′(~r)]|n′(~r)=n(~r) − ε]d~r = 0 (3.30)

with

veff (~r) ≡ v(~r) +

∫
n(~r)

|~r − ~r′|
d~r + vxc(~r) (3.31)

and the functional derivative

vxc(~r) ≡
δ

δn′(~r)
Exc[n

′(~r)]|n′(~r)=n(~r) (3.32)

The corresponding equations are the single particle Schrödinger equation

[−1

2
~∇2 + veff (~r)] φj(~r) = εjφj(~r) j = 1, ...., N (3.33)

As well as the equation for the particle density is

n(~r) =
N∑
j=1

|φj(~r)|2 (3.34)
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Which form together self consistent Khon -Sham equation and effective potential. If one use

the exact Exc[n(~r)] and vxc[n(~r)] it would be possible to find the exact solution.

3.4 Solving Kohn-Sham equation

In a condensed matter system the KS equation gives a way to obtain the exact density and

energy of the ground state. The process starts with an initial electron density n(r), usually

a superposition of atomic electron density, then the effective KS potential VKS is calculated

and the KS equation is solved with single-particle eigenvalues and wavefunctions, a new

electron density is then calculated from the wavefunctions.

Start

n(r):Initial guess

Calculate effective potential:

Vks[n] = Vext[n]+VHartree[n]+VXc[n]

Solve Kohn-Sham equation:

(− ~2
2m
∇2 + VKS(r))]ψi(r) = Eiψi(r)

Calculate the density:

n(r) =
∑N

i=1 |ψi(r)|
2

Self consistent

Energies, Forces, Stress,

Geometric optimization

Stop

Yes

No

This is usually done numerically through some self consistent iteration as shown in above

flowchart . Self-consistent condition(s) can be the change of total energy or electron density
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from the previous iteration or total force acting on atoms is less than some chosen small quan-

tity, or a combination of these individual conditions. If the self-consistency is not achieved,

the calculated electron density will be mixed with electron density from previous iterations

to get a new electron density. A new iteration will start with the new electron density. This

process continues until self-consistency is reached. After the self-consistency is reached, var-

ious quantities can be calculated including total energy, forces, stress, eigenvalues, electron

density of states, band structure, etc..

3.5 Generalized-Gradient Approximations

The LSDA neglects inhonogeneities of real charge density which could be defferent from the

Homogeneous Electron Gas(HEG). The exchange correlation energy density has significantly

defferent result from HEG. This gives rise to the various Generalized-Gradient Approxima-

tions (GGA) which include density gradient correlation and higher spatial dertiviatives of

electron density and gives better result than LDA in many cases. Three most widely used

GGA’S are the from propeosed by Becke [30], Perdew et al. [31]and Perdew, Burke and

Enzerhof [32]. From spin polarized system [33] we know that:

ELSDA
XC [n↑(r), n↓(r)] =

∫
n(r) εhomXC (n↑(r), n↓(r))dr (3.35)

Where XC energy density εhomXC (n(r)) is a function of the density alone and is decomposed

into exchange energy density εhomX (n(r)) and correlation energy density εhomC (n(r)) . So that

the XC energy functional is decomposed into exchange energy functional ELDA
X [n(r)] and

correlation energy functional ELDA
C [n(r)] linearly.

From density gradient ∇n(r),

EGGA
XC [n↑(r), n↓(r)] =

∫
n(r) εhomXC (n↑(r), n↓(r), |∇n↑(r)|, |∇n↓(r)|, ...)dr (3.36)

=

∫
n(r) εhomX n(r))FXC(n↑(r), n↓(r), |∇n↑(r)|, |∇n↓(r)|, ...)dr (3.37)

Where FXC is dimensionless and εhomX n(r)) is the exchange energy density of the unpolarized

HEG. FXC can be decomposed linearly into exchange contribution Fc as FXC = Fx + Fc.

Generally GGA works better than LDA, in pridicting binding energy of molecules and bond

length, crystall lattice constants, especially the system where charge density varried rapidly.
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In case of ionic crystall, GGA overcorrects LDA results where the lattice constants of LDA

fit well than GGA. But in case of transition metal oxides and rare-earth element, both LDA

and GGA parform badly. This drawback leads to approximations beyond LDA and GGA.

3.6 Local Spin Density Approximation (LSDA)

Spin DFT is important in the theory of atoms amd molecules with net spins, as well as

solids with magnetic order. The relevent example for our purpose is the Zeeman term that

is different Fermions with up and down spin. According to this model the particle density,

n(r) = n(r, σ =↑) + n(r, σ =↓) (3.38)

and the spin density

s(r) = n(r, σ =↑)− n(r, σ =↓) (3.39)

This results the energy density as

E = EHK [n, s] ≡ E ′HK [n] (3.40)

Where [n] denotes the functionl of the density which depends both on space and spin. In

absance of external Zeeman fields, the soluton of lowest energy may be spin polarized. That

is,

n(r, σ =↑) 6= n(r, σ =↓) (3.41)

which is anologous to the broken symmetry solution of unrestricted Hartree-Fock theorem.

The usefulness of spin Density Functional Theory is in these cases as well. The original

Hartree-Fock theorem are valid and the ground state is determined by total ground state

density n(r, σ =↑) + n(r, σ =↓) for the system where there is no spin dependent external

potential.

3.7 LDA+U Method

The systems which are strongly correlated contain rare-earth metal (transition metal) having

partially filled d or f shells. L(S)DA and GGA can not explain them properly. In this

method, electrons are considered into two classes: delocalized s, p electron and localized d
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or f electrons. The total energy in L(S)DA+U [34] method is given by,

ELDA+U
tot [ρσ(r), {nσ}] = ELSDA[ρσ(r)] + EU [{nσ}]− Edc[{nσ}] (3.42)

where,

σ = spin indexes

ρσ(r) = electron density for spin-σ electrons

{nσ} = density matrix of f or d electron for spin-σ electrons

ELSDA[ρσ(r)] = standard LSDA energy functional

EU [{nσ}] = electron-electron coulomb interaction energy . The last term is double counting

term which remove the average LDA energy contribution of d or f electrons from the LDA

energy

Edc[{nσ}] =
1

2
UN(N − 1)− 1

2
J [N↑(N↑ − 1) +N↓(N↓ − 1)] (3.43)

where,

N = N↑ +N↓.

U and J are coulomb and exchange parameters. If exchange and non sphericity is neglected

then,

ELDA+U
tot = ELDA +

1

2
U
∑
i 6=j

ninj −
1

2
UN(N − 1) (3.44)

The orbital energies εi are derivative of above equation with respect to orbital occupations

ni:

εi =
∂E

∂ni
= εLDA + U(

1

2
− ni) (3.45)

For ni = 1,LDA orbital energiesare shifted by −U
2

and by U
2

for unoccupied orbitals ( ni = 0)

, resulting the upper and lower Hubbard bands, which opens a gap at the Fermi energy in

transition metal oxides. In case of double counting term, it has two different tretement:

AMF and FLL. The former is most suitable for small U system [35] and the letter for large

U system [36]. The energies for double counting is given by [37],

19



Density Functional Theory (DFT)

Edc
AMF =

1

2
UN2 − U + 2lJ

2l + 1

1

2

∑
σ

N2
σ (3.46)

and

Edc
AMF =

1

2
UN(N − 1)− 1

2
J
∑
σ

Nσ(Nσ−1) (3.47)

where,

N
2(2l+1)

= average occupation of the correlated orbitals

Nσ
2l+1

= average occupation of a single spin of the correlated orbital
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Chapter 4

TiO2: A test case

TiO2 is a widely studied compound mainly have the three crystal types rutile, anatase,

and brookite are found in nature. Only the first two play a significant part in artificial

operations. Experimental data on TiO2 brookite is limited due to its frequentness and

delicate medication [41]. As a semiconductor material with long-term stability, non-toxic

environmental adequacy, and astronomically low-cost vacuity TiO2 has also been taken into

account for photovoltaic operations. Still, due to optic gaps slightly above 3 eV (rutile: 3.0

eV [42,43], anatase: 3.4 eV [44] and brookite: 3.3 eV [45], natural TiO2 is only photoactive in

the UV region of the electromagnetic spectrum and an inefficient active solar cell material.

Still, the material advantages of TiO2 can be used laterally technically and economically.

Feasible color-acclimatized solar cells where it acts as an electron-transporting substrate for

a chemisorbed photoactive color.
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4.1 Crystallographic Structure

According to atomic physics and quantum chemistry, crystallographic structure is the dis-

tribution of electrons of an atom or molecules in atomic or molecular orbitals. TiO2 has two

important phases, anatase and rutile and both of them are tetragonal in structure. Structure

of TiO2 rutile is shown in figure 4.1.

Figure 4.1: Crystallographic structure of TiO2 rutile phase.

Figure 4.2: Crystallographic structure of TiO2 anatase phase.

Structure of TiO2 anatase is shown in figure 4.2. The parameters which are necessary to

draw the electronic structure of TiO2 rutile and anatase is given in table 4.1.
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Table 4.1: Parameters needed to draw the electronic structure of rutile and anatase TiO2.

Parameters TiO2 (Rutile) TiO2 (Anatase)

Lattice P42/mnm (No.136) I41/amd (No.141)

a 4.586 3.782

b 4.586 3.782

c 2.954 9.502

α, β, γ 90 90

Ti 0.5, 0.5, 0.5 0.5, 0.75, 0.375

O 0.1954, 0.8046, 0.5 0.5, 0.75, 0.1618

4.2 Self Consistent Field (SCF)

We perform the calculation with 1000 k-points in the first Brillouin zone for both rutile and

anatase structure. Used Rkmax was 7. Mesh details for rutile is 8×8×13 and for anatase is

10×10×10. Energy convergence criteria was 0.00001 Ry and charge convergence criteria was

0.0001 e, where e is the charge of electron. The RMT values we use in calculation is given

in table 4.2.

Table 4.2: RMT values used in the formation of rutile and anatase TiO2 crystallographic structure.

Phase Potential RMT

Ti O

Rutile PBE 1.90 1.72
mBJ 1.90 1.72

Anatase PBE 1.84 1.66
mBJ 1.84 1.66

RMT stands for Radius Muffin-Tin which describes the radious of the atoms we use. It is

necessary to use appropriate RMT so that the atomic sphere of one atom must not be in

touch with another. We have found the Band gap with PBE and mBJ apporimation is given

in table 4.3. Both rutile and anatase bandstructure provides a direct band gap which means

that both rutile and anatase are non-metalic in bahavior. Calculated total energy, Fermi

energy, and magnetic moment for both structure is given in table 4.4.
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Table 4.3: Estimated band gap for both rutile and anatase phase with PBE and mBJ approxi-

mation.

Phase Band Gap (eV)

PBE mBJ

Rutile 1.822 2.561

Anatase 1.977 2.817

Table 4.4: Total energy, Fermi energy and magnetic moment estimated from the SCF with PBE

and mBJ potential for both anatase and rutile phase.

Phase Potential Total energy Fermi energy Magnetic
(eV) (eV) Moment

Rutile PBE -4018.06676879 0.3682081574 0.00002

mBJ -4006.43935176 0.3997111379 0.0000

Anatase PBE -4018.07684582 0.3120134224 0.00007

mBJ -4006.39506933 0.3571528680 -0.00001

4.3 Energy convergence analization

Basically the energy convergence curve shows how many iterations are needed and how the

energy is converged.

Figure 4.3: Energy convergence curve of rutile TiO2. Left for PBE and right for mBJ approxi-

mation

If we make a comparison between anatase and rutile, anatase structure takes more iteration

to converge the energy.
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Figure 4.4: Energy convergence curve of anatase TiO2. Left for PBE and right for mBJ approx-

imation

4.4 Bandstructure

Figure 4.5 represents the bandstructure of rutile between -6 and 6 eV. It can be seen that

the valance band maximum (VBM) and conduction band minimum (CBM) of the rutile

are both at Γ point which then produces a direct bandgap. Bandgap for rutile with PBE
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Figure 4.5: Estimated bandstructure of rutile phase with PBE (left) and mBJ (right) potential.

approximation is 1.822 eV and with mBJ it is 2.561 eV. Calculated values of widths of valance

band for the rutile are approximately equivalent to 5.5 eV with an excellent agreement with
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the experimental values of 5.4 eV [51]. Figure 4.6 represents the bandstructure of anatase

between -6 and 8 eV. From the figure, we can see that the valance band maximum(VBM)

and conduction band minimum (CBM) produces the direct bandgap. Bandgap found for

anatase structure is 1.977 eV with PBE and 2.817 with mBJ approximation.
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Figure 4.6: Estimated bandstructure of anatase phase. Left for PBE and right for mBJ potential.

Calculated values of widths of valance band for the rutile are approximately equivalent to

4.8 eV with an excillent agreement with the experimental values of 4.7 eV [52]. In both

structure valance band is closer to the Fermi level than the conduction band.

4.5 Density of state

Figure 4.7 and 4.8 represent the total density of state(TDOS) and partial density of states

(PDOS) for both up and down spin for rutile and anatase respectively. From figure 4.7, for

anatase valence band ranges from 4.8 to 0 eV for PBE and 4.6 to 0 eV for mBJ approximation.

The bandgap is 1.977 eV for PBE and 2.817 for mBJ approximation. The larger gap in the

anatase is correlated with the narrower width of its valance bands and conduction bands in

the energy window.
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Figure 4.7: DOS of TiO2 anatase with PBE (left) and mBJ (right) potential.
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Figure 4.8: Estimated DOS of rutile TiO2. Left for PBE and right for mBJ potential.

In the case of rutile, the valance band ranges from 5.5 to 0 eV for PBE and 5.3 to 0 eV for mBJ

approximation. Band-gap found is 1.822 eV for PBE and 2.561 eV for mBJ approximation.

There is a little difference between them. There are some differences in oxygen contribution

between the rutile and the anatase which can be attributed to the different distortions of

the O atom. The concentration of the oxygen atom is rich in valence band than conduction

band in both rutile and anatase structure.

4.6 Optical properties

We also evaluate the optical absorption spectra for the TiO2 rutile and anatase separately

with either PBE and mBJ potential to simulate the optical properties of TiO2. It absorbs

mainly UV light and a very weak absorption in the visible-light region. Figure 4.9 represents

the absorption coefficient versus energy curve of anatase and rutile structure for PBE and

mBJ potential. We know the visible light ranges from 1.8 eV to 3.1 eV. From the figure,
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we can see that there is a small energy absorption coefficient in the visible light region.

Absorptivity increases in the UV region and we got a sharp peak at approximately 7 eV

in anatase and approximately at 8 eV in rutile. So, both rutile and anatase mainly absorb

UV light. Optical absorption provides essential information on the electronic structures of

semiconductors.
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Figure 4.9: Optical absorptivity for anatese and rutile phase. Left for anatase and right for rutile.
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Figure 4.10: Optical conductivity for anatase (left) and rutile (right) phase.

Figure 4.10 represents the optical conductivity at different energies of anatase and rutile

structure respectively. The optical conductivity is the extension of electrical transport to

high (optical) frequencies. As electronic conduction is a matter of putting electrons in the

conduction band, one other way to achieve this goal is to give an electron bound to the

atoms enough energy to break the bond and set it free to move.
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TiO2: A test case

This can easily be performed by shining the material with light which photons do have

energy allowing the breaking of the bonds. In a solid-state language, photons can promote

electrons from the valence to the conduction band leaving a hole in the valence band. The

freed electron and hole can then contribute to the electrical conduction of the material.

This is called optical conductivity. Electron energy loss spectroscopy is the use of the energy

distribution of electrons that pass through a thin sample to analyze the content of the sample

and create images with unique contrast effects. When a photon strikes the atoms of TiO2 it

looses some energies to excite the electrons of TiO2.
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Figure 4.11: Electron energy loss for anatase and rutile structure. Left for anatase and right for

rutile.
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Figure 4.12: Optical reflectivity for anatase structure with PBE (left) and mBJ (right) potential.

Figure 4.11 represents the electron energy loss versus system energy for anatase and rutile

structure for PBE and mBJ potential respectively. Almost 90% photon energy is needed to

be absorbed by the electron for going to the next stable state. We know that reflection is the

change in direction of a wavefront at an interface between two different media with different
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TiO2: A test case

refractive indexes. So that the wavefront returns into the medium from which it originated.

When light interacts with the TiO2 sample some photon gets reflected by the at the atomic

surface of TiO2. Reflectivity increases with the increment of energy as shown in the figure.

Figure 4.12 is representing the optical reflectivity of anatase and rutile structure respectively.
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Figure 4.13: Refractive index for anatase and rutile structure. Left for anatase and right for

rutile phase.

Both structure with PBE and mBJ potential gives almost the same result. The reflectivity

is maximum at 10.5 to 11 eV. About refraction, we know that the refractive index means

how fast light travels through the material. The real part of refractive index versus the

incident photon energy for parallel polarization of electric field of an electromagnetic wave is

depicted in figure 4.13. It should be noted that the refractive index is directly proportional

to magnetic moment (µ) of the system, with relation N =
√
µε , that shows the dependency

of refractive index to magnetic properties of them. So, the engineering of the refractive index

is possible by tuning the magnetic moment. Figure 4.13 is representing the refractive index

of anatase and rutile TiO2 structure for PBE and mBJ potential respectively. For both

structures, the value of the refractive index is maximum at approximately 3 eV for both

potentials. From the figure, we can see that the traveling speed of light through the anatase

and rutile structure increases to 3 eV but after that speed of light decreases as the energy

increases with time. This means, in both anatase and rutile structures optical absorptivity

and conductivity increase when it is subjected to UV light, and reflectivity and refractivity

decrease in the UV region.

30



Chapter 5

Electronic and Optical properties of

Ti0.75Nb0.25O2

The structural and electronic properties of Nb-doped rutile TiO2 with doping configurations

were investigated by first-principles calculations based on the density functional theory [46].

The presence of Nb within the crystalline structure increased the photo-activity of pow-

ders as compared to non-modified TiO2 powders, while the Nb deposition at the powder’s

surface decreased the photo-activity for all the investigated compositions. In the over a

stoichiometric range of the oxide, the data, when applied to undoped rutile, allow some

conclusions about the atomic or electronic transport properties, both within the high and

coldness regimes. [47] The electrochemical properties of Nb-doped TiO2 were investigated for

the first time as Na-ion battery anodes. The introduction of oxygen vacancies significantly

enhanced the reversible capacity of the electrode due to the improved conductivity. In pur-

suit of upper photo-activity, Nb-doped TiO2 powders were evaluated within the reduction of

CO2. The replacement of Ti by Nb in the crystalline structure of TiO2 promoted methanol

formation.
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Electronic and Optical properties of Ti0.75Nb0.25O2

5.1 Crystallographic structure

If we dope 25% Nb within pure TiO2, the electronic structure of Ti0.75Nb0.25O2 we found is

given in figure 5.1. Ti0.75Nb0.25O2 crystallizes at space group P2/m (No. 10), with lattice

constants a = 4.582 Å b= 4.582 Å and c = 2.954 Å with the atomic position Ti1 (0.25, 0.5,

0.5), Ti2 (0, 0, 0), O1 (0.35, 0.30, 0), O2 (0.15, 0.70, 0), O3 (0.40, 0.80, 0.50), O4 (0.10, 0.20,

0.50) and Nb (0.50, 0, 0).

Figure 5.1: Crystallographic structure of Ti0.75Nb0.25O2.

5.2 Volume Optimization

We perform the volume optimization calculation. The energy vs volume curve we have found

from volume optimization is given in figure 5.2.

Figure 5.2: Energy vs Volume curve from Volume optimization. Lowest energy found for 6%

increment from the initial structure.
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Electronic and Optical properties of Ti0.75Nb0.25O2

We have specified the structure changes in -3, 0, 3, 6, 9, 12, 15, 18, 21 % and we have found

the lowest energy structure for 6% increment from the initial value. The value of ground

state energy is -13969.326745 Ry and this is the most stable structure for Ti0.75Nb0.25O2.

5.3 Self Consistent Field (SCF)

We perform the volume optimization calculation with 1000 k-points in the first Brillouin

zone. The RMT values we use is given in table 5.1. Used Rkmax was 7. For the SCF

calculation the energy convergence value was 0.00001 Ry and the charge convergence value

was 0.0001 e.

Table 5.1: RMT values used in the calculation.

Atom RMT

Ti 1.90

O 1.70

Nb 1.90

Table 5.2: Estimated total energy (Ry) and Fermi energy for both spin and non-spin calculation

with PBE and mBJ potential.

Structure Potential Total energy Fermi energy
(Ry) (Tetrah. M)

Ti0.75Nb0.25O2 (non-spin) PBE -13969.29261854 0.6363838258

mBJ -13941.58720477 0.7206829829

Ti0.75Nb0.25O2 (spin) PBE -13969.32606640 0.5743798328

mBJ -13941.57228274 0.6480336767

The total energy and Fermi energy we have found from the calculation is in table 5.2. The

total magnetic moment obtained from the spin polarization of Ti0.75Nb0.25O2 with PBE and

mBJ approximation is given in table 5.3.

Table 5.3: Magnetic moments from the calculations.

Subject Approximation Total magnetic moment

Ti0.75Nb0.25O2 PBE 0.55960

mBJ -0.08000
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Electronic and Optical properties of Ti0.75Nb0.25O2

5.4 Energy convergence analization

Figure 5.3 and 5.4 shows how much iteration is needed to converse the enegy for the cal-

culation. Ti0.75Nb0.25O2 needs approximately 3 times more iteration to converse the energy.

Figure 5.3: Energy convergence curve for Ti0.75Nb0.25O2. Left for PBE and right for mBJ

approximation

Figure 5.4: Energy convergence curve for Ti0.75Nb0.25O2 spin polarization. Left for PBE and

right for mBJ approximation
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5.5 Bandstructure

Figure 5.5 and 5.6 is representing the band structure of rutile Ti0.75Nb0.25O2 between -6

to 6 eV for PBE and mBJ potential respectively. The Valance band maximum (VBM) and

conduction band minimum (CBM) is both on Γ point. We can see from the figure that

conduction band is closer to the Fermi lavel than valence band and the conduction band

is overlapping the Fermi lavel. For spin up and spin down the bandstructure is almost the

same. Because of dopant atom (25% Nb) the samples conductivity increases.
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Figure 5.5: Bandstructure of Ti0.75Nb0.25O2(rutile) for PBE potential. Left for spin up and right

for spin down.

For both spin up and down with PBE and mBJ potential, conduction band is on the fermi

level. so there is no direct band gap. As we know in case of metal, no direct band gap can

be found. So we can state that, Ti0.75Nb0.25O2 is showing the metallic behavior.
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Figure 5.6: Bandstructure of Ti0.75Nb0.25O2(rutile) for mBJ potential. Left for spin up and right

for spin down.

5.6 Density of State

The added figure shows the Total density of the states(TDOS) and Partial contributions of

every atoms (PDOS) that constitutes the body. From figure we can also see the energy gap

between valence band and the conduction band. Conduction band is overlapping the Fermi

level. So, metalic behavior is clear for Ti0.75Nb0.25O2. The contribution of Oxygen atom is

greater in valance band than conduction band but for Ti and Nb, they are rich in conduction

band.
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Figure 5.7: DOS of Ti0.75Nb0.25O2 with PBE(left) and mBJ(right) potential.
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5.7 Optical properties

During introducing dopant Nb on rutile TiO2, the absorption edges extends beyond the UV

light region. The optical properties in the wavelength ranges less than 400 nm are controlled

by the electronic transition between O 2p states and Ti 3d states. Therefore the spectra

are nearly identical in this wavelength range. The optical absorption spectra for parallel

polarization of electric field of electromagnetic wave for Ti0.75Nb0.25O2 with PBE and mBJ

approximation is given below in figure 5.8.
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Figure 5.8: Optical absorption for Ti0.75Nb0.25O2. Absorptivity increases beyond the visible

region.

We can see from the figure that, the absorption coefficient for Ti0.75Nb0.25O2 has a maximum

value at approximately 7 eV both for PBE and mBJ potential. There is a small difference

(0.1 eV) between PBE and mBJ potential. Absorptivity increases with the energy increases

in the UV region. In visible region (1.8 eV to 3.1 eV) absorbtivity is negligible. Absorptivity

in z-direction has a greater response than x-direction.

Figure 5.9 shows the optical conductivity for Ti0.75Nb0.25O2. Beyond the visible region,

conductivity increases and it is maximum at approximately 7 eV for both potentials. As

electronic conduction is a matter of putting electrons in the conduction band, one other way

to achieve this goal is to give an electron bound to the atoms enough energy to break the

bond and set it free to move. Due to the inelastic scattering, an amount of energy is lost by

the electrons during collision which is known as electron energy loss.
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Figure 5.9: Estimated optical conductivity of Ti0.75Nb0.25O2.

Figure 5.10 shows the electron energy loss versus Energy (eV) curve from which we can see

that loss increases as the energy increases. In visible region, absorption is small so number

of collisions are also small. Thats why electron energy lose is also negligible. As absorptivity

starts to increase beyond the visible region, collision increases due to which loss also increases

with increase energy.
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Figure 5.10: Optical electron energy loss of Ti0.75Nb0.25O2.
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Figure 5.11: Optical reflectivity of Ti0.75Nb0.25O2. Reflectivity decreases after visible region.

Figure 5.11 shows the optical reflection of Ti0.75Nb0.25O2. As the reflection is inverse of

the optical absorption, reflectivity in rich in visible region than UV. Figure 5.12 shows the

refraction of light from Ti0.75Nb0.25O2 surface. Refractive index decreases beyond the visible

region and we get the maximum refraction in visible region. Clearly, the rutile TiO2 is

less visible-light responsive upon 25% Nb doping and the absorption strength in the visible

spectrum and even in the infrared range is improved when the Nb atoms replace Ti atoms.
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Figure 5.12: Optical refractivity of Ti0.75Nb0.25O2.
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Chapter 6

Discussion and Conclusion

In this work, we have investigated the electronic and optical properties of TiO2 (rutile and

anatase) and also for 25% Nb doped TiO2 (Ti0.75Nb0.25O2). Figure 6.1 is showing the band-

structure of pure rutile TiO2 and Ti0.75Nb0.25O2.
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Figure 6.1: Comparison between bandstructure of pure(left) and doped rutile(right). Because of

doped Nb, compound turns to a metal (Ti0.75Nb0.25O2) from non metallic (TiO2) behavior.

In case of pure rutile, It gives a direct bandgap which means pure rutile shows non-metallic

behavior but in the case of Ti0.75Nb0.25O2, it has no direct bandgap. So, non-metallic TiO2

turns to a metal when 25% Nb is doped within it. We can observe a significant change in

optical property in dopant TiO2 in comparison with pure TiO2. From figure 6.2 we can see
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Discussion and Conclusion

that absorptivity increased in visible region with dopping. Similarly the optical conductivity,

electron energy loss increases with dopant Nb. reflectivity and refractivity decreases with

dopand atom. Which conclude that Ti0.75Nb0.25O2 can absorb more photon than TiO2. So

electronically and optically Ti0.75Nb0.25O2 is more active than pure TiO2.
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Figure 6.2: Optical absorption of pure and doped rutile TiO2. Blue line represents pure TiO2 and

green line is representing doped TiO2. Due to dopant Nb, absorptivity increased in visible region.

Because of increasing absorptivity, Ti0.75Nb0.25O2 can be used instead of TiO2 to pre-

pare highly efficient UV-absorbing thin-film coatings for the protection of organic materials

against photodegradation.

Researchers are implementing DFT to understand and predict structural, electronic, optical

and magnetic properties of different materials continuously. After completing this project

work, I was able to learn a lot about the electronic and optical properties of a quantum

particle. In future, I wish to extend my work in this field.
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List of Abbreviation

DFT : Density Functional Theory
RMT : Radius Muffin Tin
DOS : Density of States
GGA : Generalized Gradient Approximation
HK : Hohenberg-Kohn
KS : Kohn-Sham
LSDA : Local Spin Density Approximation
XC : Exchange correlation
AMF : Around Mean Field
FLL : Fully Localized Limit
RHF : Restricted Hartree Fock
UHF : Unrestricted Hartree Fock
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