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Abstract 

 

 

Perovskite materials KInCl3 and KGaCl3 are studied to investigate their properties of use as 

future solar materials. We present structural, electrical, and optical properties for halide 

perovskites KInCl3 and KGaCl3. These perovskite compounds has promising electrical and 

optical characteristics which indicate that they could be used in photovoltaic and other 

optoelectronic applications. Many properties of condensed matter systems have been studied 

and successfully described using density functional theory (DFT) based on electronic structure 

and optical properties calculations. The exchange correlation potential PBE-GGA approach, as 

implemented in the WIEN2k code, is used to investigate structural optimization, energy band 

structure, density of states, and optical spectra for these perovskite compounds. The analysis 

of real and imaginary dielectric tensor components, optical absorption, reflectivity, and 

refractivity spectra is used to determine the optical performance of the compounds.  
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Chapter 1 

 

Introduction 

 

 

The systems name is KInCl3 and KGaCl3 and both of these system are perovskite materials. 

These Perovskites has the cubic crystal structure. Opto-electronic properties of perovskite 

materials with general formula ‘ABX3’ (where, A = Monovalent cation, B = Divalent metal 

cation and X = Anion) has now demonstrated a new horizon for future photovoltaic uses [1, 2]. 

Metal halide perovskite solar cells have lately risen to prominence as one of the most promising 

low-cost thin-film photovoltaics contenders (PV). The fundamental understanding of their 

physicochemical properties is essential for improving their efficiency and stability [3]. The 

favorable intrinsic properties of these materials including strong absorption coefficient [4] , 

sharp bandages with low levels of disorder [5], photon recycling capability [6,7] and excellent 

charge transport characteristics [8], render them as excellent candidates for related 

optoelectronic applications such as solar cells , light emitting diodes, and transistors [9] . Due 

to their outstanding optoelectronic capabilities, metal halide perovskites are attracting a lot of 

attention for a variety of applications. The creation of ecologically benign halide perovskite 

materials with a variety of crystal structures and compositions opens up previously 

unimaginable possibilities for achieving desired features and applications [10]. 

These perovskites have recently emerged as a promising material for low cost and high 

efficiency solar cells, these perovskite has been used as the replacement for thin-film solar cells 

[11]. 
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Electronic structure calculations based on density functional theory become more and more 

popular in condensed matter physics, quantum chemistry and material science. Density 

functional theory is by far the most widely used approach for electronic structure calculations 

nowadays. It is usually called first principle method or ab initio method, because it allows 

people to determine many properties of a condensed matter system by just giving some basic 

structural information without any adjustable parameter [12]. The accurate approximation for 

the exchange-correlation functional, which derives from the Kohn-Sham method, is also a 

major component of DFT [13].In 1964 Honenberg and Kohn they proved the electron density, 

a variable only depending on 3 spatial variables, in principle contains all information about the 

ground state properties of a system. In atomic and nuclear physics, as well as theoretical 

chemistry, the Hartree-Fock technique is widely employed [14]. Hartree and Fock solved the 

complicated and analytically inaccessible many-body Schrödinger equation by deriving a set 

of self consistent, wave-function based equations that permitted an iterative calculation of 

energies and other desirable quantities [15]. 

In 1965, Kohn and Sham constructed a set of self-consistent, iteratively solvable equations, 

allowing for the first time the implementation of Hohenberg and Kohn's previously exclusively 

theoretical concept in actual computer simulations [16]. 

The birth of density functional theory (DFT), which occupies the majority of this project. Kohn 

was awarded the Nobel Prize in Chemistry in 1998 for his work on the density-functional 

theory [14] 

In our calculations we have used the full-potential linearized augmented plane-wave method 

(FP-LAPW) as it is implemented in the WIEN2k code. WIEN2k is a software tool that allows 

you to use density functional theory to calculate the electronic structure of solids (DFT). t uses 

the full potential (linearized) augmented plane-wave ((L)APW)+local orbitals(lo) approach, 

which is one of the most accurate methods for calculating band structure. WIEN2k is a multi-

featured all-electron system that includes relativistic effects. Within density functional theory, 

the Linearized Augmented Plane Wave (LAPW) approach has proven to be one of the most 

accurate ways for computing the electronic structure of solids. WIEN2k is an all electron 

scheme including relativistic effect and has many features. It is used for computation of 

structure, electronic and magnetic properties [17]. 

This report is divided into five chapters. In chapter one, we illustrate the general introduction 

for perovskite of KInCl3 and KGaCl3. In chapter two, we explain the basic quantum mechanics 
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such as Schrödinger groundbreaking equations, time-independent Schrödinger equation, the 

wave function, atoms and molecules, the many-body system and Born-Oppenheimer 

Approximation, the Hartree-Fock approach, limitation and failings of the Hartree-Fock 

approach. In chapter three, we discuss the basic density functional theory. It includes electron 

density, Thomas-Fermi direct approximation, the Hohenberg-Kohn theorems, the Kohn-Sham 

equations, the exchange-correlation functional, local density approximation (LDA), 

generalized-gradient approximation (GGA). In chapter four, we discuss our whole calculation 

system and structure, band structure, density of state (DOS), optical properties of these 

materials using WIEN2k. In chapter five, we discuss the summery of this working system. 
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Chapter 2 

 

Basic Quantum Mechanics 

 

Quantum mechanics is an important tool to understand at the theoretical level the electronic 

structure of chemical compound and the mechanisms, thermodynamics and kinetics of 

chemical reactions [18]. Quantum mechanics is the study of incredibly small objects. On the 

scale of atoms and subatomic particles, it explains how matter behaves and interacts with 

energy. This chapter including the most basic forms valid for many-body systems. 

 

2.1 Schrödinger’s groundbreaking equation 

Erwin Schrödinger’s attempt to describe the so-called ‘matter waves’ in 1926, where he used 

de Broglie’s relations to describe hypothetical plane waves, led to the most general form of the 

famous equation named after him, the time-dependent Schrödinger equation [19] 

                                                  𝑖ℏ
𝜕

𝜕𝑡
Ψ(𝑟, 𝑡) =  Η̂Ψ(𝑟, 𝑡)                                                    (2.1)                                                                                       

 Where, Hˆ is the Hamiltonian operator, ħ is the daric constant and Ψ is the wave function. It 

is often impracticable to use a complete relativistic formulation of the formula; therefore 

Schrödinger himself postulated a non-relativistic approximation which is nowadays often used, 

especially in quantum chemistry. 
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 Using the Hamiltonian for a single particle 

                                             Η̂ =  𝑇̂ +  𝑉̂ =  −
ℏ2

2𝑚
∇⃗⃗⃗² + 𝑉(𝑟 , 𝑡)                                          (2.2)  

Leads to the (non-relativistic) time-dependent single-particle Schrödinger equation 

                                        𝑖ℏ
𝜕

𝜕𝑡
Ψ(𝑟, 𝑡) =  [−

ℏ2

2𝑚
∇2⃗⃗⃗⃗⃗ + 𝑉(𝑟 , 𝑡)] Ψ(𝑟, 𝑡)                               (2.3) 

 In this project, from now on only non-relativistic cases are considered. For N particles in three 

dimensions, the Hamiltonian is 

Η̂   =  ∑
𝑝̂𝑖

2

2𝑚𝑖

𝑁

𝑖=1

+ 𝑉(𝑟1, 𝑟2, … , 𝑟𝑁 , 𝑡  ) 

                                                    = − 
ℏ2

2
∑

1

𝑚𝑖

𝑁
𝑖=1 + 𝑉(𝑟1, 𝑟2, … , 𝑟𝑁 , 𝑡  )                                 (2.4) 

the corresponding Schrödinger equation reads 

𝑖ℏ
𝜕

𝜕𝑡
Ψ(𝑟1, 𝑟2, … , 𝑟𝑁 , 𝑡) =  [− 

ℏ2

2
∑

1

𝑚𝑖

𝑁
𝑖=1 + 𝑉(𝑟1, 𝑟2, … , 𝑟𝑁 , 𝑡  )] Ψ (𝑟1, 𝑟2, … , 𝑟𝑁 , 𝑡  )           (2.5)                                                                                          

 

2.2 Time-independent Schrödinger equation 

 Special cases are the solutions of the time-independent Schrödinger equation, where the 

Hamiltonian itself has no time-dependency (which implies a time-independent potential  

𝑉(𝑟1, 𝑟2, … , 𝑟𝑁 , ) and the solutions therefore describe standing waves which are called 

stationary states or orbitals). The time- independent Schrödinger equation is not only easier to 

treat, but the knowledge of its solutions also provides crucial insight to handle the 

corresponding time-dependent equation. 

 The time-independent equation (2.5) is obtained by the approach of separation of variables, 

i.e. the spatial part of the wave function is separated from the temporal part via [20] 

Ψ (𝑟1, 𝑟2, … , 𝑟𝑁 , 𝑡  ) =  ψ (𝑟1, 𝑟2, … , 𝑟𝑁  )𝜏(𝑡) =  ψ (𝑟1, 𝑟2, … , 𝑟𝑁  )𝑒
𝑖𝐸𝑡

ℏ⁄                             (2.6) 

Furthermore, the l.h.s. of the equation reduces to the energy eigenvalue of the Hamiltonian 

multiplied by the wave function, leading to the general eigenvalue equation  

                                       𝐸ψ (𝑟1, 𝑟2, … , 𝑟𝑁  ) =  𝐻̂ ψ (𝑟1, 𝑟2, … , 𝑟𝑁  )                                    (2.7)  
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Again, using the many-body Hamiltonian, the Schrödinger equation becomes 

     𝐸ψ(𝑟1, 𝑟2, … , 𝑟𝑁  ) =  [− 
ℏ2

2
∑

1

𝑚𝑖

𝑁
𝑖=1 + 𝑉(𝑟1, 𝑟2, … , 𝑟𝑁 , 𝑡  )] Ψ(𝑟1, 𝑟2, … , 𝑟𝑁 , )                      (2.8)                                                                                                                                     

 

2.3 The wave function 

The term wave function was used several times throughout the presentation. As a result, and in 

order to better comprehend what follows, a closer examination of the wave function is 

undertaken. 

The first and most important postulate is that the state of a particle is completely described by 

its (time-dependent) wave function, i.e. the wave function contains all information about the 

particle’s state. The function of wave is a quantity related to moving object, which is 

represented by the Ψ. The wave function Ψ has no direct physical meaning. The wave function 

Ψ(r, t) describes the position of a particle with respect to time. It can be considered as 

probability amplitude. |Ψ|² is proportional to the probability of finding a particle at a particular 

time. It is the probability density. 

                                                      |Ψ|² = Ψ∗Ψ  

The wave function Ψ must be finite everywhere. If Ψ has more than one value at any point, it 

mean more than one value of probability of finding the particle at that point which is obviously 

ridiculous. The wave function must be continuous and have a continuous first derivative 

throughout, as well as being normalizable. 

For the sake of simplicity the discussion is restricted to the time-independent wave function. A 

question always arising with physical quantities is about possible interpretations as well as 

observations. The Born probability interpretation of the wave function, which is a major 

principle of the Copenhagen interpretation of quantum mechanics, provides a physical 

interpretation for the square of the wave function as a probability density [21, 22] 

                                     𝑃 =  |ψ (𝑟1, 𝑟2, … , 𝑟𝑁  )|2𝑑𝑟1 𝑑𝑟2 … . 𝑑𝑟𝑁                                               (2.9) 

Equation (2.1) describes the probability that particles 1, 2, … , N are located simultaneously in 

the corresponding volume element 𝑑𝑟1 𝑑𝑟2 … . 𝑑𝑟𝑁 [23]. What happens if the positions of two 

particles are exchanged, must be considered as well. Following merely logical reasoning, the 

overall probability density cannot depend on such an exchange 
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                        |ψ (𝑟1, 𝑟2, … , 𝑟𝑖, 𝑟𝑗 , … , 𝑟𝑁  )|
2

=  |ψ (𝑟1, 𝑟2, … , 𝑟𝑗 , 𝑟𝑖, … , 𝑟𝑁  )|
2

                     (2.10)                                                                        

 There are only two possibilities for the behavior of the wave function during a particle 

exchange. The first one is a symmetrical wave function, which does not change due to such an 

exchange. This corresponds to bosons (particles with integer or zero spin). The other possibility 

is an anti-symmetrical wave function, where an exchange of two particles causes a sign change, 

which corresponds to fermions (particles which half-integer spin) [24, 25]. 

 In this text only electrons are from interest, which are fermions. The antisymmetric fermion 

wave function leads to the Pauli principle, which states that no two electrons can occupy the 

same state, whereas state means the orbital and spin parts of the wave function (the term spin 

coordinates will be discussed later in more detail).The antisymmetric principle can be seen as 

the quantum-mechanical formalization of Pauli’s theoretical ideas in the description of spectra 

(e.g. alkaline doublets) [26].  

Another consequence of the probability interpretation is the normalization of the wave 

function. If equation (2.9) describes the probability of finding a particle in a volume element, 

setting the full range of coordinates as volume element must result in a probability of one, i.e. 

all particles must be found somewhere in space. This corresponds to the normalization 

condition for the wave function 

                            ∫ 𝑑𝑟1   ∫ 𝑑𝑟2…. ∫ 𝑑𝑟𝑁 |ψ (𝑟1, 𝑟2, … , 𝑟𝑁  )|2 = 1                                            (2.11)                                              

 Equation (2.11) also gives insight on the requirements a wave function must fulfill in order to 

be physical acceptable. Wave functions must be continuous over the full spatial range and 

square-integratable [27]. 

 Another very important property of the wave function is that calculating expectation values of 

operators with a wave function provides the expectation value of the corresponding observable 

for that wave function [28]. For an observable 𝑂(𝑟1, 𝑟2, … , 𝑟𝑁  ), this can generally be written 

as 

         𝑂 =  〈𝑂〉 =  ∫ 𝑑𝑟1   ∫ 𝑑𝑟2…. ∫ 𝑑𝑟𝑁 𝜓∗ (𝑟1, 𝑟2, … , 𝑟𝑁  )𝑂̂𝜓(𝑟1, 𝑟2, … , 𝑟𝑁  )                     (2.12)                                             
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2.4 Atoms and molecules  

All atomic and molecular systems deal with charged particles. The single electron Schr¨odinger 

equation where the electron moves in a Coulomb potential, marks a good starting point. 

                                      𝑖ℏ
𝜕

𝜕𝑡
𝜓𝑟 =  [−

ℏ2

2𝑚
∇⃗⃗⃗2 −

𝑒2

4𝜋𝜖0

1

|𝑟|
] 𝜓(𝑟)                                                (2.13)                                                                               

For the sake of simplicity, the so-called atomic units are introduced at this point for subsequent 

usage. That means the electron mass 𝑚𝑒, the elementary charge e, reduced Planck constant 

(Diracconstant) ℏ as well as the vacuum permittivity factor 4𝜋𝜖0are all set to unity [29] 

The Schrödinger equation for the single electron simplifies to 

                                           Ε𝜓(𝑟) =  [−
1

2
∇⃗⃗⃗2 −  

1

|𝑟|
]  𝜓(𝑟)                                                      (2.14)                                                      

This form of the Schrödinger equation is analytically solvable. Although for the description of 

matter, even atoms, the Schrödinger equation exceeds analytical accessibility soon. Usage of 

(2.8) allows a construction of a generalized many-body Schrödinger equation for a system 

composed of N electrons and M nuclei, where external magnetic and electric fields are 

neglected.  

                     Ε𝑖𝜓𝑖(𝑟1𝑟2 … 𝑟𝑁; 𝑅⃗⃗1𝑅⃗⃗2 … . 𝑅⃗⃗𝑁) =  Η𝜓(𝑟1𝑟2 … 𝑟𝑁; 𝑅⃗⃗1𝑅⃗⃗2 … . 𝑅⃗⃗𝑁)                       (2.15)                     

Equation (2.15) does not seem overly complicated on the first look, but an examination of the 

corresponding molecular Hamiltonian  

Η̂ =  −
1

2
∑ ∇𝑖

2 −
1

2
∑ ∇𝑘

2 − ∑ ∑
𝑍𝑘

𝑟𝑖𝑘
+  ∑ ∑

1

𝑟𝑖𝑗
+  ∑ ∑

𝑍𝑘𝑍𝑙

𝑅𝑘𝑙

𝑀
𝑙>𝑘

𝑀
𝑘=1

𝑁
𝑗>𝑖

𝑁
𝑖=1

𝑀
𝑘=1

𝑁
𝑖=1

𝑁
𝑘=1

𝑁
𝑖=1           (2.16)                                                                              

 Reveals the real complexity of the equation. 

In equation (2.16), 𝑀𝑘represents the nuclear mass in atomic units (i.e. in units of the electron 

mass), 𝑍𝑘and 𝑍𝑙 represent the atomic numbers, and 𝑟𝑖𝑗 = |𝑟𝑖 − 𝑟𝑗|, 𝑟𝑖𝑘 = |𝑟𝑖 − 𝑅⃗⃗𝑘| 𝑎𝑛𝑑 𝑅𝑘𝑙 =

|𝑅⃗⃗𝑘 − 𝑅⃗⃗𝑙| represent the distances between electron-electron, electron-nucleus and nucleus-

nucleus respectively.  

A term-by-term interpretation of the right hand side in (2.16) reveals that the first two terms 

correspond to the kinetic energies of the electrons and nuclei. The latter three terms denote the 



9 
 

potential part of the Hamiltonian in terms of electrostatic particle-particle interactions. This is 

reflected by the corresponding signs, where the negative sign denotes an attractive potential 

between electrons and nuclei, whereas the positive signs denote repulsive potentials between 

electrons and electrons as well as the nuclei among themselves [23]. 

 

2.5 The Many-Body System and Born-Oppenheimer 

Approximation 

The Hamiltonian of a many-body condensed-matter system consisting of nuclei and electrons 

can be written as:  

Η̂ =  −
ℏ2

2𝑚𝑒
∑ ∇𝑖

2𝑁
𝑖=1 −

ℏ2

2𝑀𝑘
∑ ∇𝑘

2 −𝑀
𝑘=1  ∑ ∑

𝑍𝑘𝑒2

𝑟𝑖𝑘

𝑀
𝑘=1

𝑁
𝑖=1 +

1

2
∑ ∑

𝑒2

𝑟𝑖𝑗
+

1

2

𝑁
𝑗>𝑖

𝑁
𝑖=1 ∑ ∑

𝑍𝑘𝑍𝑙

𝑅𝑘𝑙

𝑀
𝑙>𝑘

𝑀
𝑘=1     

                                                                                                                                            (2.17) 

The term by term interactions of this equation is described .Taking advantage of the fact, that 

the mass of a proton is approximately 1800 times larger than the mass of an electron, which is 

the minimum mass ratio of electron to nucleus (hydrogen atom) and becomes even higher for 

heavier atoms, another simplification can be introduced. The so called Born-Oppenheimer 

approximation states that due to the mass difference the nucleus can be, in comparison to the 

electrons, considered non-moving, i.e. spatially fixed. One can say that the core movement can 

be neglected [30]. 

As a consequence, the general Hamiltonian is replaced by the so-called electronic Hamiltonian 

                        Η̂ =  −
ℏ2

2𝑚𝑒
∑ ∇𝑖

2𝑁
𝑖=1 − ∑ ∑

𝑍𝑘𝑒2

𝑟𝑖𝑘

𝑀
𝑘=1

𝑁
𝑖=1 +

1

2
∑ ∑

𝑒2

𝑟𝑖𝑗

𝑁
𝑗>𝑖

𝑁
𝑖=1                                (2.18) 

Or in terms of operators 

                                                  𝐻̂𝑒𝑙 =  𝑇̂ + 𝑈̂ + 𝑉̂ = 𝑇̂ + 𝑉̂𝑡𝑜𝑡                                               (2.19)                                                                                               

Especially for problems of molecular physics and quantum chemistry, the electronic 

Schrödinger equation is of major interest. But despite all simplifications a simple look at 

equations (2.15) to (2.19) indicates that there are still a few more crucial points left to deal with 

until a useful solution can be obtained. 
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Inspection of equations (2.21) and (2.22) shows that the kinetic energy term depend on the 

nuclear co-ordinates𝑅𝑘𝑙, or in other words, it is only a function of the electron number. Also 

the electron-electron repulsion 𝑈̂ is the same for every system with only Coulomb interactions. 

Therefore the only part of the electronic Hamiltonian which depends on the atomic molecular 

system is the external potential 𝑉̂ caused by the nucleus electron repulsion. Subsequently this 

also means that 𝑇̂ and 𝑈̂ only need the electron number N as input and will therefore be denoted 

as ̔ universal’, whereas 𝑉̂ is system-dependent. The expectation value of 𝑉 ̂is also often denoted 

as the external potential𝑉𝑒𝑥𝑡, which is consistent as long as there are no external magnetic or 

electrical fields [28].  

As soon as the external potential is known, the next step is the determination of the wave 

functions 𝜓𝑖 which contain all possible information about the system. As simple as that sounds, 

the exact knowledge of the external potential is not possible for most natural systems, i.e. in 

similarity to classical mechanics, the largest system which can be solved analytically is a 2-

body-system, which corresponds to a hydrogen atom. Using all approximations introduced up 

to now it is possible to calculate a problem similar to𝐻2
+, a single ionized hydrogen molecule. 

To get results for larger systems, further approximations have to be made. 

 

2.6 The Hartree-Fock Approach 

In order to find a suitable strategy to approximate the analytically not accessible solutions of 

many-body problems, a very useful tool is variational calculus, similar to the least-action 

principle of classical mechanics. By the use of variational calculus, the ground state wave 

function 𝜓0, which corresponds to the lowest energy of the system𝐸0, can be approached. A 

useful literature source for the principles of variational calculus has been provided by T. 

Flie¨ybach [31].  

Hence, for now only the electronic Schrödinger equation is of interest, therefore in the 

following sections we set 𝐻̂ ≡ 𝐻̂𝑒𝑙 ,  𝐸 ≡ 𝐸𝐸𝐿  and so on. 

 Observables in quantum mechanics are calculated as the expectation values of operators [10, 

11].The energy as observable corresponds to the Hamilton operator, therefore the energy 

corresponding to a general Hamiltonian can be calculated as 

                𝐸 = 〈𝐻̂〉 = ∫ 𝑑𝑟1  ∫ 𝑑𝑟2 … ∫ 𝑑𝑟𝑁𝜓∗ (𝑟1, 𝑟2, … , 𝑟𝑁  )𝐻̂𝜓(𝑟1, 𝑟2, … , 𝑟𝑁  )              (2.20) 
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The central idea of the Hartree-Fock approach is that the energy obtained by any (normalized) 

trial wave function, different from the actual ground state wave function, is always an upper 

bound, i.e. higher than the actual ground state energy. If the trial function happens to be the 

desired ground sate wave function, the energies are equal 

                                                         𝐸𝑡𝑟𝑖𝑎𝑙 ≥ 𝐸0                                                                         (2.21)                                                                                                                            

 With          

                   𝐸𝑡𝑟𝑖𝑎𝑙 = ∫ 𝑑𝑟1  ∫ 𝑑𝑟2 … ∫ 𝑑𝑟𝑁𝜓𝑡𝑟𝑖𝑎𝑙
∗ (𝑟1, 𝑟2, … , 𝑟𝑁  )𝐻̂𝜓𝑡𝑟𝑖𝑎𝑙(𝑟1, 𝑟2, … , 𝑟𝑁  )   (2.22) 

 And 

                 𝐸0 = ∫ 𝑑𝑟1  ∫ 𝑑𝑟2 … ∫ 𝑑𝑟𝑁𝜓0
∗ (𝑟1, 𝑟2, … , 𝑟𝑁  )𝐻̂𝜓0(𝑟1, 𝑟2, … , 𝑟𝑁  )                      (2.23)            

The expressions above are usually inconvenient to handle. For the sake of a compact notation, 

in the following the bracket notation of Dirac is introduced. For a detailed description of this 

notation, the reader is referred to the original publication [32]. 

In that notation, equations (2.21) to (2.23) are expressed as 

                               ⟨𝜓𝑡𝑟𝑖𝑎𝑙|𝐻̂|𝜓𝑡𝑟𝑖𝑎𝑙⟩ =  Ε𝑡𝑟𝑖𝑎𝑙 ≥ Ε0 =  ⟨𝜓0|𝐻̂|𝜓0⟩                                       (2.24)                                                                   

Proof [11]: The Eigen functions 𝜓𝑖 of the Hamiltonian 𝐻̂(each corresponding to an energy 

eigenvalue 𝐸𝑖 form a complete basis set, therefore any normalized trial wave function 𝜓𝑡𝑟𝑖𝑎𝑙 

can be expressed as linear combination of those Eigen functions.  

                                                           𝜓𝑡𝑟𝑖𝑎𝑙 =  ∑ ⋋𝑖 𝜓𝑖                                                            (2.25)𝑖  

 The assumption is made that the Eigen functions are orthogonal and normalized. Hence it is 

requested that the trial wave function is normalized, it follows that 

                                                        ⟨𝜓𝑡𝑟𝑖𝑎𝑙|𝜓𝑡𝑟𝑖𝑎𝑙⟩ = 1 

                                                      =⟨∑ ⋋𝑖 𝜓𝑖𝑖 | ∑ ⋋𝑗𝑗 𝜓𝑗⟩ 

                                                     =∑ ∑ ⋋𝑖
∗⋋𝑗 ⟨𝜓𝑖|𝜓𝑗⟩𝑗𝑖  

                                                     =∑ |⋋𝑗|²𝑗                                                                          (2.26) 

 

On the other hand, following (2.24) and (2.26) 
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                          Ε𝑡𝑟𝑖𝑎𝑙 =  ⟨𝜓𝑡𝑟𝑖𝑎𝑙|𝐻̂|𝜓𝑡𝑟𝑖𝑎𝑙⟩ = ⟨∑ ⋋𝑖 𝜓𝑖𝑖 |𝐻̂| ∑ ⋋𝑗 𝜓𝑗𝑗 ⟩ = ∑ 𝐸𝑗|⋋𝑗|𝑗 ²           (2.27) 

Together with the fact that the ground state energy 𝐸0 is per definition the lowest possible 

energy, and therefore has the smallest eigenvalue (𝐸0 ≤ 𝐸𝑖), it is found that 

                                              Ε𝑡𝑟𝑖𝑎𝑙 = ∑ 𝐸𝑗|⋋𝑗|𝑗 ² ≥ 𝐸0 ∑ |⋋𝑗|²𝑗                                               (2.28)                             

What resembles equation (2.24).   

The mathematical framework used above, i.e. rules which assign numerical values to functions, 

so called functionals, is also one of the main concepts in density functional theory. A function 

gets a numerical input and generates a numerical output whereas a functional gets a function 

as input and generates a numerical output [33].  

Equations (2.20) to (2.29) also include that a search for the minimal energy value while applied 

on all allowed N-electron wave-functions will always provide the ground-state wave function 

(or wave functions, in case of a degenerate ground state where more than one wave function 

provides the minimum energy). Expressed in terms of functional calculus, where 𝜓  

N addresses all allowed N-electron wave functions, this means [23] 

                                                      Ε0 =  min
𝜓→𝑁

Ε[𝜓] 

                                                           = min
𝜓→𝑁

⟨𝜓|𝐻̂|𝜓⟩ = min
𝜓→𝑁

⟨𝜓|𝑇̂ + 𝑉̂ + 𝑈̂|𝜓⟩                    (2.29) 

For N-electron systems this search is, due to the large number of possible wave functions on 

the one hand and limitations in computational power and time, practically impossible. What is 

possible is the restriction of the search to a smaller subset of possible wave function, as it is 

done in the Hartree-Fock approximation. 

 

2.7 Limitation and failings of the Hartree-Fock Approach 

The number of electrons in an atom or a molecule might be even or odd. The compound is in 

a single state if the number of electrons is even and they are all in double occupied spatial 

orbital∅𝑖 such system are called closed-shell systems. The number of the electrons is odd as 

well as compounds with single occupied orbitals and the compounds are in the higher ground 

state, are called open-shell system. These two types of systems correspond to two different 

approaches of the Hartree-Fock method. In the restricted HF-method (RHF), all electrons are 
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considered to be paired in orbitals and other is unrestricted HF-method (UHF), this limitation 

is lifted totally [34] 

The closed shell systems which require the unrestricted approach in order to get proper results. 

The description of the dislocation of 𝐻2, where one electron must be located at one hydrogen 

atom, can logically not be obtain by the uses of the system which places both electrons in the 

same spatial orbital. The method choosing system is very important point in HF calculation 

[35]. 

The scale of the system under investigation might also be a constraint for computations. Khon 

states a number of M = 𝑝5  with 3 ≤ 𝑝 ≤ 10 parameters for a result of the 𝐻2. 

For a system with 𝑁 = 100 electrons the number of parameters rises to 

                                       𝑀 = 𝑝3𝑁 = 3300 𝑡𝑜 10300 ≈ 10150 𝑡𝑜 10300                                (2.30) 

HF-methods are limited to systems with a small number of involved electrons (N≈ 10). The 

exponential factor in (2.30) this limitation is sometimes called exponential wall. [36] 

A many electron wave function cannot be described entirely by a single Slater determinant, the 

energy obtained by HF calculations is always larger than the exact ground state energy. The 

Hartree-Fock-limit is the most precise energy obtained using HF-methods. [34] 

The difference between 𝐸𝐻𝐹 and 𝐸𝑒𝑥𝑎𝑐𝑡 is called correlation energy and can be denoted as [37] 

                                                      𝐸𝑐𝑜𝑟𝑟
𝐻𝐹 = 𝐸𝑚𝑖𝑛 − 𝐸𝐻𝐹                                                           (2.31) 

Despite the fact that 𝐸𝑐𝑜𝑟𝑟 usually small against 𝐸𝑚𝑖𝑛, as in the example of a 𝑁2 molecule where 

                                                𝐸𝑐𝑜𝑟𝑟
𝐻𝐹 = 15.9𝑒𝑉 < 0.001 . 𝐸𝑚𝑖𝑛                                            (2.32) 

It has the potential to have a significant impact.  

For instance, the experimental dissociation energy of the 𝑁2 molecule is 

                                                  𝐸𝑑𝑖𝑠𝑠 = 9.9𝑒𝑉 < 𝐸𝑐𝑜𝑟𝑟                                                          (2.33) 

Which corresponds to a large contribution of correlation energy to relative energies such as 

reaction energies which are of particular interest in quantum chemistry [38]. 
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Chapter 3 

 

Density Functional Theory 

 

Density Functional Theory (DFT) is a computational quantum mechanical modeling method 

used in physics, chemistry and material science to investigate the electronic structure of many 

body system in particular atoms, molecules and the condensed phases. The parameters of 

various electron systems can be derived using this theory by employing a functional, function 

of another function, in this case the spatially dependent electron density. As a result of the 

application of electron density functions, the name density functional theory was coined. The 

success of the modern DFT method is due to Khon and Sham 1965 idea that the electron kinetic 

energy be estimated using an extra set of orbitals used to represent the electron density. [39] 

DFTˈs main principle is to describe a many-body interacting system based on its particle 

density rather than its many-body wave function. Its foundation is the well-known Honenberg-

Khon theorem, which states that all of a systems properties can be considered unique 

functionals of its ground state density. In many situations, the findings of DFT calculations for 

condensed pretty well with experimental data, particularly since the 1990s with better 

approximations for the XC (exchange-correlation) energy functional. Despite advances in 

DFT, it is still difficult to use it to adequately explain intermolecular interactions, charge 

transfer excitations, transition states, global potential energy surfaces, and some other strongly 

correlated system, as well to calculate the band gap of some semiconductors. [40] 
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3.1 Electron Density 

The basic variable of density functional theory, electron density (for N electrons), is defined as 

[41, 34] 

                            𝑛(𝑟) = 𝑁 ∑ ∫ 𝑑𝑥⃗2 … ∫ 𝑑𝑥⃗𝑁𝜓∗(𝑥⃗1, 𝑥⃗2, … , 𝑥⃗𝑁)𝜓(𝑠1
𝑥⃗1, 𝑥⃗2, … , 𝑥⃗𝑁)            (3.1) 

It's worth noting that the notation in (3.1) takes into account a wave function with spin and 

spatial coordinates. The probability of finding a specific electron with any spin in the volume 

element 𝑑𝑟1 is given by the integral in the equation. Because electrons are indistinguishable, N 

times the integral equals the likelihood of finding any electron there. The other electrons 

represented by the wave function𝜓(𝑥⃗1, 𝑥⃗2, … , 𝑥⃗𝑁)  have arbitrary spin and spatial coordinates 

[34]. 

If the spin coordinates are ignored as well, the electron density can be described as a 

quantifiable observable that is just reliant on spatial coordinates [41, 36] 

                                   𝑛(𝑟) = 𝑁 ∫ 𝑑𝑟2 … ∫ 𝑑𝑟𝑁𝜓∗(𝑟1, 𝑟2, … , 𝑟𝑁)𝜓(𝑟1, 𝑟2, … , 𝑟𝑁)                  (3.2) 

Before providing a strategy that uses the electron density as a variable, make sure it has all of 

the essential system information. The total number of electrons can be obtained by integration 

the electron density over the spatial variables. 

                                                         𝑁 = ∫ 𝑑𝑟𝑛(𝑟)                                                                     (3.3) 

What has to be proven is that the electron density uniquely characterizes the external potential, 

where uniquely means up to an additive constant [34]. 

 

3.2 Thomas-Fermi Dirac Approximation 

The predecessor to DFT was the Thomas-Fermi (TF) model proposed by Thomas and Fermi 

in 1927. In this method, they used the electron density n(r) as the basic variable instead of the 

wave function. The total energy of a system in an external potential 𝑉𝑒𝑥𝑡(𝑟) is written as a 

functional of the electron density n(r) as: 

                   𝐸𝑇𝐹[𝑛(𝑟)] = 𝐴1 ∫ 𝑛(𝑟)
5

3 𝑑𝑟 +  ∫ 𝑛(𝑟)𝑉𝑒𝑥𝑡(𝑟)𝑑𝑟 +
1

2
∬

𝑛(𝑟)𝑛(𝑟ˊ)

|𝑟−𝑟ˊ|
𝑑𝑟𝑑𝑟ˊ            (3.4) 
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Where the first term is the kinetic energy of the non-interacting electrons in a homogeneous 

electron gas (HEG) with 𝐴1 =
3

10
(3𝜋2)

2

3 in atomic units (ℏ = 𝑚𝑒 = 𝑒 = 4𝜋
𝜖0

⁄ = 1).  the 

kinetic energy density of a HEG is obtained by adding up all of the free-electron energy state 

𝜖𝑘 =
𝑘2

2
 up to the Fermi wave factor 𝑘𝐹 = [3𝜋2𝑛(𝑟)]

1
3⁄  as: 

𝑡0[𝑛(𝑟)] =
2

2𝜋3
∫

𝑘2

2
4𝜋𝐾2𝑑𝐾

𝐾𝐹

0

 

                                                                  =𝐴1𝑛(𝑟)
5

3⁄                                                           (3.5) 

The second term is the classical electrostatic energy of the nucleus-electron Coulomb 

interaction. The third term is the classical electrostatic Hartree energy approximated by the 

classical Coulomb repulsion between electrons. In the original TF method, the exchange and 

correlation among electrons was neglected. In 1930, Dirac extended the Thomas-Fermi method 

by adding a local exchange term 𝐴2 ∫ 𝑛(𝑟)
4

3⁄ 𝑑𝑟  𝑡𝑜 Eq (3.4) with 𝐴2 = −
3

4
(3

𝜋⁄ )
1

3⁄ , which 

leads Eq. (3.4) to 

𝐸𝑇𝐹𝐷[𝑛(𝑟)] = 𝐴1 ∫ 𝑛(𝑟)
5

3 𝑑𝑟 +  ∫ 𝑛(𝑟)𝑉𝑒𝑥𝑡(𝑟)𝑑𝑟 +
1

2
∬

𝑛(𝑟)𝑛(𝑟ˊ)

|𝑟−𝑟ˊ|
𝑑𝑟𝑑𝑟 ´ + 𝐴2 ∫ 𝑛(𝑟)

4
3⁄ 𝑑𝑟       

                                                                                                                                             (3.6)                                                                                   

The ground state density and energy can be obtained by minimizing the Thomas-Fermi-Dirac 

equation (3.6) subject to conservation of the total number (N) of electrons. By using the 

technique of Lagrange multipliers, the solution can be found in the stationary condition: 

                                    𝛿{𝐸𝑇𝐹𝐷[𝑛(𝑟)] − 𝜇(∫ 𝑛(𝑟)𝑑𝑟 − 𝑁)} = 0                                              (3.7) 

 Where µ is a constant known as a Lagrange multiplier, whose physical meaning is the chemical 

potential (or Fermi energy at T = 0 K). Eq (3.7) leads to the Thomas-Fermi-Dirac equation, 

5

3
𝐴1𝑛(𝑟)(2

3⁄ ) + 𝑉𝑒𝑥𝑡(𝑟) + ∫
𝑛(𝑟´)

|𝑟 − 𝑟ˊ|
𝑑𝑟´ +

4

3
𝐴2𝑛(𝑟)(1

3⁄ ) − 𝜇 = 0                                       (3.8) 

Which can be solved directly to obtain the ground state density. The approximations used in 

Thomas type approach are so crude that the theory suffers from many problems. The most 

fundamental flaw is that the theory fails to account for atom-to-atom bonding, preventing 

molecules and solids from forming. Although it is insufficient to represent electrons in matter, 

its concept of using election density as the primary variable demonstrates how DFT work. 
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3.3 The Hohenberg-Kohn Theorems 

Hohenberg and Khon proved DFT to be an accurate theory of many body system in 1964 [40] 

.The ̏ basic lemma of Hohenberg-Khon ̋ [4] states that not only 𝑛(𝑟) is a functional of 𝑣(𝑟) but 

that also 𝑣(𝑟) is up to constant determined by 𝑛(𝑟) uniquely [41, 36, 34] The discussion in this 

work is limited to no degenerate ground states, following Hohenberg and Khonˈs original 

method and proof by reductioad absurdum [41]. This constraint, however, has no bearing on 

the offered proof for the second theorem and can be lifted for the first theorem as well [42, 43]. 

The theory is based upon two theorems. 

Theorem-I: 

The external potential or the ground state energy E is a unique functional of electron density. 

                                                               𝐸 = 𝐸[𝑛(𝑟)]                                                                  (3.9)  

Where n(r) is the electron density. 

Proof: 

For the sake of simplicity, I will only analyze the case where the system's ground state is non 

degenerate. The validity of the theorem can be demonstrated. The proof is based on the notion 

of minimum energy. Suppose there are two different external potentials 𝑉𝑒𝑥𝑡(𝑟) and 𝑉𝑒𝑥𝑡
´  which 

differ by more than a constant and lead to the same ground state density 𝑛0(𝑟). 

The two external potentials would give two different Hamiltonians, 𝐻̂ and 𝐻̂ˊ𝑤ℎich have the 

same ground state density 𝑛0(𝑟) but would have different ground state wave functions, Ψ and 

Ψˊ, with 𝐻̂Ψ = 𝐸0Ψ and 𝐻̂ˊΨˊ = 𝐸0
ˊ Ψˊ . Since Ψˊ is not the ground state of  Ψ̂ˊ , it follows that    

                                                                    𝐸0    <  ⟨Ψ´|𝐻̂|Ψ´⟩ 

                                                                   <  ⟨Ψ´|𝐻̂|Ψ´⟩+ < ⟨Ψ´|𝐻̂ − 𝐻̂´|Ψ⟩ 

                                                                    < 𝐸0
´ + ∫ 𝑛0(𝑟)[𝑉𝑒𝑥𝑡(𝑟) − 𝑉𝑒𝑥𝑡

´ (𝑟)]𝑑𝑟          (3.10) 

Similarly 

𝐸0
´  < ⟨Ψ|𝐻̂´|Ψ⟩ 

                                                                     < ⟨Ψ|𝐻̂|Ψ⟩+ < ⟨Ψ|𝐻̂´ − 𝐻̂|Ψ⟩ 
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                                                                     < 𝐸0 + ∫ 𝑛0(𝑟)[𝑉𝑒𝑥𝑡
´ (𝑟) − 𝑉𝑒𝑥𝑡(𝑟)]𝑑𝑟         (3.11)  

Adding Eq. (3.10) and (3.11) lead to the contradiction 

                                                   𝐸0 +  𝐸0
´ <  𝐸0 + 𝐸0

´                                                               (3.12) 

Hence, no two different external potentials 𝑉𝑒𝑥𝑡(𝑟) can give rise to the same ground state 

density 𝑛0(𝑟), i.e., the ground state density determines the external potential 𝑉𝑒𝑥𝑡(𝑟), except 

for a constant. That is to say, there is a one-to-one mapping between the ground state 

density𝑛0(𝑟), and the external potential 𝑉𝑒𝑥𝑡(𝑟)  , although the exact formula is unknown. 

Theorem-II 

The electron density that minimizes the energy of the overall functional is the true ground state 

electron density. 

                                                    𝐸[𝑛(𝑟)]  ≥  𝐸𝑂[𝑛0(𝑟)]                                                         (3.13) 

Proof: 

The universal functional 𝐹[𝑛(𝑟)] can be written as 

                                               𝐹[𝑛(𝑟)] = 𝑇[𝑛(𝑟)] + 𝐸𝑖𝑛𝑡[𝑛(𝑟)]                                            (3.14) 

Where 𝑇[𝑛(𝑟)] is the kinetic energy and 𝐸𝑖𝑛𝑡[𝑛(𝑟)] is the interaction energy of the particles. 

According to vibrational principle, for any wave function Ψ0 the energy functional 𝐸[Ψ´]: 

                                              𝐸[Ψ´] = ⟨Ψ´|𝑇̂ + 𝑉̂𝑖𝑛𝑡 + 𝑉̂𝑒𝑥𝑡|Ψ´⟩                                             (3.15) 

Has its global minimum value only when Ψ´ is the ground state wave function Ψ0, with the 

constraint that the total number of the particles is conserved. According to HK theorem I, Ψ´ 

must correspond to a ground state with particle density 𝑛´(𝑟) and external potential 𝑉𝑒𝑥𝑡
´ , then 

𝐸[Ψ´]is a functional of 𝑛´(𝑟) According to variational principle: 

                                            𝐸[Ψ´] = ⟨Ψ´|𝑇̂ + 𝑉̂𝑖𝑛𝑡 + 𝑉̂𝑒𝑥𝑡|Ψ´⟩ 

                                                       =  𝐸[𝑛´(𝑟)] 

                                                       = ∫ 𝑛´(𝑟) 𝑉´𝑒𝑥𝑡(𝑟)𝑑𝑟 + 𝐹[𝑛0(𝑟)] 

                                                       > 𝐸[Ψ𝑂] 
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                                                       = ∫ 𝑛0(𝑟)𝑉𝑒𝑥𝑡(𝑟)𝑑𝑟 + 𝐹[𝑛0(𝑟)] 

                                                      = 𝐸[𝑛0(𝑟)]                                                                            (3.16) 

Thus the energy functional 𝐸[𝑛(𝑟)] = ∫ 𝑛(𝑟)𝑉𝑒𝑥𝑡(𝑟)𝑑𝑟 + 𝐹[𝑛(𝑟)]evaluated for the correct 

ground state density 𝑛0(𝑟) is indeed lower than the value of this functional for any other 

density𝑛(𝑟). Therefore by minimizing the total energy functional of the system with respect to 

variations in the density 𝑛(𝑟), one would find the exact ground state density and energy [40]. 

 

3.4 The Kohn-Sham equations 

Kohn and Sham introduced an orbital approach for evaluating 𝐹𝑛𝑖[𝑛] in 1965, which was a key 

step toward quantitative modeling of electronic structure.To put it another way, they simply 

computed the equivalent potential, designated𝑣𝑒𝑓𝑓(𝑟), and used it to calculate the kinetic 

energy of N non-interacting particles given only their density distribution 𝑛(𝑟) and used the 

Schrödinger equation 

                                            (−
ℏ2

2𝑀
∇2 + 𝑣𝑒𝑓𝑓(𝑟)) 𝜓𝑖(𝑟) = 𝜖𝑖𝜓𝑖(𝑟)                                     (3.17) 

 Such that 𝑛(𝑟) = ∑ |𝜓(𝑟)|2𝑁
𝑖=1  the states 𝜓𝑖here are ordered so that the energies 𝜖𝑖 are non-

decreasing, and the spin index is included in i. If 𝜖𝑁 is degenerate with 𝜖(𝑁+1) (and also at finite 

temperatures), fractional occupations 𝑓𝑖 are to be used (𝑟) = ∑ 𝑓𝑖|𝜓(𝑟)|2,∞
𝑖=1  , but if only spin-

degeneracy is involved, the result for the density is not affected.  The kinetic energy is then 

given by, 𝐹𝑛𝑖[𝑛(𝑟)] = ∑ ⟨𝜓𝑖|𝑡̂𝑖|𝜓𝑖⟩ =  ∑ 𝜖𝑖 − ∫ 𝑑𝑟 𝑛(𝑟)𝑁
𝑖=1

𝑁
𝑖=1  𝑣𝑒𝑓𝑓(𝑟)  where 𝑡̂𝑖 is the kinetic 

energy operator for the 𝑖𝑡ℎ electron𝑇̂ = ∑ 𝑡̂𝑖𝑖 . The external potential of a system is known in 

practice, not the density distribution or the effective potential. By calculating a functional 

derivative of the three-term expression for 𝐹𝐻𝐾[𝑛] and rearranging the terms, one may 

determine the effective potential, 

                                          𝑣𝑒𝑓𝑓(𝑟) = 𝑣(𝑟) − 𝑒𝜑(𝑟) + 𝑣𝑥𝑐(𝑟)                                               (3.18)           

Where we have used Eq. 
𝛿𝐹[𝑛]

𝛿𝑛
= −𝑣 for both the interacting and no interacting system. The 

electrostatic potential is here 
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                                                 𝜑(𝑟) = − ∫ 𝑑𝑟´ 𝑛(𝑟´)

|𝑟−𝑟´|
                                                               (3.19)    

And the exchange-correlation potential is defined as 

                                                      𝑣𝑥𝑐(𝑟) =
𝛿𝐸𝑥𝑐

𝛿𝑛(𝑟)
                                                                     (3.20) 

Given a particular approximation for 𝐸𝑥𝑐[𝑛], one obtains 𝑣𝑥𝑐(𝑟), and can thus find 𝑣𝑒𝑓𝑓(𝑟) 

from 𝑛(𝑟) for a given 𝑣(𝑟) the set of equations described above is called the Kohn-Sham 

equations of DFT [44]. 

Now solving the Kohn-Sham equations. The Kohn-Sham equations have an iterative solution 

and must be solved in the same way each time. To solve the Kohn-Sham equations for a many-

body system, we must first define the Hartree potential and the exchange-correlation potential, 

as well as the Hartree potential and the exchange-correlation potential, we need to know about 

the Hartree potential and the exchange-correlation potential, the density of electrons n (r). 

Starting with an initial trial electron density, as shown in Figure 3.1, is a well-known method 

for solving the Kohn-Sham equations. Then, using the trial electron density, calculate these 

equations. 

We will have a set of single electron wave functions after solving the Kohn-Sham equations. 

We can determine the new electron density using these wave functions. The new electron 

density is fed into the following cycle as an input. Finally, compare the differences in calculated 

electron densities for each repetition. The solution of the Kohn-Sham equations is considered 

to be self-consistent if the difference in electron density between consecutive iterations is less 

than a properly    specified convergence threshold. The estimated electron density is now the 

ground state electron density, and it can be used to calculate the system's total energy [45]. 
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Figure 3.1: Illustration of the self-consistent field (SCF) procedure for solving the Kohn-

sham equations. 

 

3.5 The Exchange-Correlation Functionals 

The true shape of the exchange-correlation functional is unknown, which makes solving the 

Kohn-Sham equations difficult. To approximate the exchange-correlation functional, two main 

Initial guess 

n(r) 

Calculate effective potential 

𝑉𝑒𝑓𝑓(𝒓) = 𝑉𝑒𝑥𝑡(𝒓) + 𝑉𝐻𝑎𝑟𝑡𝑟𝑒𝑒[𝑛] + 𝑉𝑥𝑐[𝑛] 

Solve KS equation 

[−
ℏ

2𝑚
∆2 + 𝑉𝑒𝑓𝑓(𝒓)] 𝜓𝑖(𝒓) = 𝜀𝑚𝑒𝜓𝑖(𝒓) 

Calculate electron density 

n(r)= ∑ Ψi
∗(𝐫)Ψi (𝐫)𝑁

𝑖=1  

Self-consistent? 

Output quantities 

Potential Energy, Static structure, Born effective 

charges, etc..  
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approximation methods have been implemented. In DFT calculations, the local density 

approximation (LDA) is the first attempt to estimate the exchange-correlation functional. The 

generalized gradient approximation is the second well-known class of approximations to the 

Kohn-Sham exchange-correlation functional (GGA).The local electron density and the local 

gradient in the electron density are included in the exchange and correlation energies in the 

GGA approximation [45]. 

 

3.6 Local Density Approximation (LDA) 

The simplest approximation to the exchange-correlation functional is the local density 

approximation (LDA). 

The local density approximation is based on the assumption that the energy density of a 

homogeneous electron gas with the same electron density r at every location in the molecule 

has the value that would be supplied by a homogeneous electron gas with the same electron 

density r at that point. The word "local" was coined to distinguish the approach from those in 

which the functional is dependent not only on r but also on the gradient (first derivative) of r, 

the difference deriving from the assumption that a derivative is a nonlocal characteristic. LDA 

functional have been mainly supplanted by local spin density approximation (LSDA; see 

below) functional, which are an extension of the approach [46]. 

As a practical approximate expression for 𝐸𝑥𝑐[𝑛], Kohn and Sham suggested what is known in 

the context of DFT as the local density approximation, or LDA: 

                               𝐸𝑥𝑐[𝑛(𝑟)] ≃  ∫ 𝑑𝑟𝑛(𝑟)𝜖𝑥𝑐(𝑛(𝑟))                                                              (3.21) 

Where 𝜖𝑥𝑐(𝑛) is the exchange correlation energy per electron in a uniform electron gas of 

density 𝑛. this quantity is known exactly in the limit of high density, and can be computed 

accurately at densities of interest, using Monte Carlo techniques. 

Note that the only difference between the resulting computational scheme and a naive mean 

field approach is the addition of the potential 

                                           𝑣𝑥𝑐(𝑟) =
𝑑(𝑛𝜖𝑥𝑐(𝑛))

𝑑𝑛
                                                                          (3.22) 

To the electrostatic potential at the appropriate step in the self-consistency loop. The 

corresponding expression for the ground state energy is: 
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                     𝐸0 = ∑ 𝜖𝑖 − 𝐸𝑒𝑠[𝑛(𝑟)] +  ∫ 𝑑𝑟 𝑛(𝑟)(𝜖𝑥𝑐(𝑛(𝑟)) − 𝑣𝑥𝑐(𝑛(𝑟))                      (3.23)

𝑁

𝑖=1

 

 Where the first term is the no interacting energy, the second term subtracts half of the double 

counting of the electrostatic energy as in the Hartree scheme, and the last term is a similar 

subtraction for the exchange correlation energy [47]. 

The local approximation is only valid in a purely theoretical sense when the density is slowly 

changing. Despite the fact that atom and molecule densities are typically highly 

inhomogeneous, LDA produces remarkably good results. For equilibrium structures, harmonic 

frequencies, and dipole moments in molecules, LDA has been found to yield reasonably 

satisfactory results [48]. 

 

3.7 Generalized-Gradient Approximation (GGA) 

The development of various generalized-gradient approximations (GGAs) which include 

density gradient corrections and higher spatial derivatives of the electron density and give 

better results than LDA in many cases. Three most widely used GGAs are the forms proposed 

by Becke (B88), Perdew et al and Perdew, Burke and Enzerhof (PBE). . The definition of the 

XC energy functional of GGA is the generalized form of LSDA to include corrections from 

density gradient 𝑛(𝑟)as 

          
 𝐸 𝑋𝐶

𝐺𝐺𝐴
[𝑛↑(𝑟), 𝑛↓(𝑟)] =  ∫ 𝑛(𝑟)𝜖𝑋𝐶

ℎ𝑜𝑚(𝑛↑(𝑟), 𝑛↓(𝑟), |∇𝑛↑(𝑟)|, |∇𝑛↓(𝑟)|, … … )𝑑𝑟 

                                    = ∫ 𝑛(𝑟)𝜖𝑋𝐶
ℎ𝑜𝑚(𝑛(𝑟))𝐹𝑋𝐶 (𝑛↑(𝑟), 𝑛↓(𝑟), |∇𝑛↑(𝑟)|, |∇𝑛↓(𝑟)|, … )𝑑𝑟 

                                                                                                                                            (3.24) 

Where 𝐹𝑋𝐶 is dimensionless and 𝜖𝑋
ℎ𝑜𝑚(𝑛(𝑟)) is the exchange energy density of the unpolarized 

HEG. 𝐹𝑋𝐶 Can be decomposed linearly into exchange contribution 𝐹𝑋 and correlation 

contribution 𝐹𝐶 as  𝐹𝑋𝐶 = 𝐹𝑋 + 𝐹𝐶 . For a detailed treatment of 𝐹𝑋 and 𝐹𝐶 in different GGAs. 

In general, GGA outperforms LDA in predicting molecular bond length and binding energy, 

crystal lattice constants, and other properties, especially in systems with rapidly fluctuating 

charge density. However, in ionic crystals, GGA overcorrects LDA results when the lattice 

constants from LDA calculations match experimental data well, but GGA overestimates it [40]. 
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Chapter 4 

 

Electronic and Optical Properties of 

KInCl3 and KGaCl3 

 

 

4.1 Crystallographic structure 

The KInCl3 and KGaCl3 structure is cubic. The space group for both of these structure is pm-

3m (no. 221). Obtained optimized lattice parameters along the available theoretical parameters 

and Wyckoff positions are collected in table. 

Table: Optimized lattice parameters and Wyckoff positions for cubic KInCl3 and KGaCl3 

 

Perovskite compounds 

Optimized Lattice 

Parameters (A֯ ) 

 

 

Wyckoff positions 

Atom x y z 

 

KInCl3 

 

5.4320 

K 0 0 0 

In 0.5 0.5 0.5 

Cl 0.5 0.5 0 

 

KGaCl3 

 

5.1428 

K 0 0 0 

Ga 0.5 0.5 0.5 

Cl 0.5 0.5 0 
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Optimized lattice parameters for KInCl3 and KGaCl3 are in closed with the available theoretical 

parameters. These parameters are then used to compute the desired properties of the materials 

being studied. The value of (α, β, γ = 90֯) for these compounds. The muffin tin radii (RMT) 

=2.3. Where the value of 𝑅𝐾𝑚𝑎𝑥 = 8.5 (R is the atomic radii and 𝐾𝑚𝑎𝑥 gives the plane wave 

cut-off). Energy converging criteria = 0.0001 Ry and a separation with cut-off energy (𝑒𝑐𝑢𝑡) =

 −0.6𝑅𝑦 between core state and valance state and the number of k points 1000. Fig.4.1 shows 

the crystal structure for these two compounds. 

                                    

                                                     

  

 

 

  

 

 

 

                                              

                       

Figure 4.1: Crystal structure for cubic KInCl3 and KGaCl3. 

 

From these structure we see that K atoms are present at corner position, I n/Ga atoms are in 

center position and Cl atoms are in the middle position. Crystalline structures are drawn by 

using the XCrySDen software and have optimized structures using the PBE-GGA 

approximation. Optimized lattice parameter are used to determine the volume optimization 

curve for minimum energy state. .Firstly, energy v/s volume optimization calculation is 

performed for both of these studied compounds. Energy v/s volume optimization curve are 

plotted for these compounds are presented in Figure. 4.2 (a, b) [48].   
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Figure 4.2. Volume optimization curve for (a) KInCl3 and (b) KGaCl3 

.4.2 Band structure 

The quantum-mechanical behavior of electrons in solids is described by a theory or band 

structure. We discuss the electronic properties of band structure for the two compounds of 

KInCl3 and KGaCl3. The band structure calculation were performed within PBE-GGA along 

with high symmetry direction of Brillouin Zone. To compute the structural parameters for 

indium and gallium based perovskite materials of KInCl3 and KGaCl3, we using the most 

accurate exchange and correlation functional. The energy measure scale in 𝑒𝑣.  The calculated 

electronic band structure of these compounds KInCl3 and KGaCl3 as shown in Figure 4.3. (a, 

b).  

 

 

 

   

    

                                                                        

        

    

  

  

  

Figure.4.3: Band structure for (a) KInCl3 and (b) KGaCl3 

 

From this calculations to identify the energy band gap, energy band structure and electronic 

response for both of these materials. From this figure.3 (a, b) we see that conduction band enter 

into the valance band across the fermi level, so there is no band gap in the fermi level. Generally 

we found band gap in semiconductors and insulators. Since the zero band gap and metallic type 
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so these materials can be used to produce electrical wire and other electrical devices. From this 

behavior we say that, both of this compounds are metallic types [49, 50].  

 

4.3 Density of states (DOS) 

To better understand the electrical characteristics of KInCl3 and KGaCl3 perovskite materials, 

the total density of state has been examined. The first step in determining a possible electrode 

material's electronic properties is to establish whether it is metallic, semiconducting, or 

insulating. The energy band gaps between valance and conduction bands can be deduced from 

the calculated density of states [51]. 

The band gaps, or the energy difference between the top of the valence band and the bottom of 

the conduction band, can be read using the DOS charts. The primary quantities that govern the 

electronic structure of a system are the energy band structure and the corresponding density of 

states. Their inspection provides information about the electric property (metal, insulator or 

semiconductor) and gives insight into the chemical bonding [17]. 

The density of state (DOS) that describes the electron distribution in the energy spectrum is 

shown in Figure.4.4: (a, b) 
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Figure .4.4: The density of state for KInCl3 and KGaCl3 

 

The electronic state is separated into three regions: lower valence band (LVB), upper valence 

band (UVB), and conduction band (CB) [52]. In Fig.4.4 (a) we see that in the valance band the 

contribution of Cl is higher than the In and K but the very little amount K is contributed in the 

valance band. In the conduction band K is contributed than the others. In Fig.4.4 (b) we see 

that the Cl is more contributed in the valance band than the Ga and K. But the conduction band 

the Cl and K is overlapping and is more contributed than the Ga. 

The DOS is calculated using the linear analytic tetrahedron method to evaluate the integrals 

over the constant energy surfaces. In our calculation, we used a mesh of 1000 k-point in the 

first Brillouin zone [53]. 

 

4.4 Optical properties of KInCl3 and KGaCl3 

The optical characteristics of perovskite compounds have been studied in order to show they 

could be used in various optoelectronic applications. The energy gap computed using PBE-

GGA for all the studied compounds are in better reconciliation with earlier reported theoretical 
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data, computations for comprehensive optical properties such as, real and imaginary dielectric 

tensor components, absorption coefficient, and reflectivity and refractivity spectra are 

performed using the PBE-GGA method. For optical properties calculation, using plasma 

frequency are 2.981 and 3.153 for both of these perovskite KInCl3 and KGaCl3. 

 

4.4.1 Dielectric tensor components 𝜺(𝝎) 

The optical impedance of medium during electromagnetic interaction is investigated using the 

frequency dependent complex dielectric function 𝜀(𝜔). The complex dielectric function is 

represented as: 

                                               𝜀𝛼𝛽(𝜔) = 𝜀1(𝜔) + 𝑖𝜀2(𝜔) 

Here, 𝜀1(𝜔) and 𝜀2(𝜔) are the real and imaginary components of dielectric tensor, which they 

are combined and produced the dielectric tensor 𝜀(𝜔). Where, 𝜀(𝜔)  indicates the amount of 

energy stored in any medium and the energy loss during absorption of sunlight, respectively.  

 

 

 

   

  

  

                                                                          

                              

   

 

 

                                    

                                     Figure. 4.5: Real dielectric tensor of KInCl3 and KGaCl3 
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The Dielectric Constant is a measurement of a substance's capacity to store electrical energy in 

an electric field. Both of the real and imaginary dielectric tensor for KInCl3 and KGaCl3 

obtained from PBE-GGA potential. Mathematically, real and imaginary dielectric tensor 

components are represented. 

For real dielectric tensor, we see that the curve is started 0.9 eV energy. Where the curve is 

increasing above and creating the large peak point for KGaCl3 at 4 eV energy. After 4 eV 

energy the curve is decreasing with increasing energy. The most essential parameter in the real 

section of the dielectric tensor is the static constant at 0 eV energy, which is dependent on the 

material's energy gap and has an inverse relationship with it. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure .4.6: Imaginary dielectric tensor of KInCl3 and KGaCl3 

 

Electronic transitions causes the distinct peaks in the imaginary dielectric tensor, which can be 

explained by inter-band transitions between the valence and conduction bands. Peak positions 
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and likely dominant transitions for all of the perovskite compounds investigated. In these 

figure. The imaginary curve for both of these materials is decreases directly and at the 2 eV 

energy the value is zero. After 2 eV energy the curve is increasing with energy and creating the 

pack position. Where the high peak point creating at the 9 eV energy [54]. 

 

4.4.2 Optical conductivity 𝝈(𝝎) 

The ability of a medium to generate a conduction phenomenon as electromagnetic radiations 

try to propagate through it is determined by optical conductivity. As electronic conduction is a 

matter of putting electrons in the conduction band, one other way to achieve this goal is to give 

an electron bound to the atoms enough energy to break the bond and set it free to move. The 

optical conductivity is shown in figure. 4.7. In these figure shows that firstly the condu- ctivity 

is decreases and at the 2 eV energy the conductivity after 2 eV energy the curve is increasing 

with increasing energy. These curves are the maximum value of the optical conductivity at 9 

eV for the KGaCl3 compound. So the KGaCl3 has more conductivity than the KInCl3. Where 

the energy range (0-12) eV [55]. 

 

 

 

 

 

 

                                                                           

 

                             

                          

 

Figure.4.7 Optical conductivity of KInCl3 and KGaCl3 
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4.4.3 Reflectivity spectra 𝑹(𝝎) 

This is a measurement of a surface's ability to reflect radiation; it is equivalent to the reflectance 

of a sufficiently thick layer of material for the reflectance to be thickness independent. Any 

compound's potential as a perfect absorber is entirely dependent on its reflectance and 

reflectivity spectra. The reflectivity of light from a surface depends upon the angle of incidence 

and the plane of polarization of the light. The normal incidence reflectivity is dependent upon 

the indices of refraction of the two media. Optical response both of these materials can also be 

explained in term of frequency dependent optical reflectivity  𝑅(𝜔) is shown in figure 4.8. In 

this figure the optical reflectivity is zero at the 2 eV energy. From the 2 eV energy the curve is 

increasing above with increasing the energy. From both of these curve we get KGaCl3 has large 

optical reflectivity [56]. 

 

 

 

  

   

 

 

 

 

 

 

                                                                              

                                 

                                      

Fig 4.8. Optical reflectivity of KInCl3 and KGaCl3 

 



34 
 

4.4.4 Refractive index 𝜼(𝝎) 

The refractive index is calculated by dividing the speed of light in a vacuum by the speed of 

light in a second medium with a higher density (also known as the Index of Refraction). The 

most common symbol for the refractive index variable is the letter 'n'. The higher the refractive 

index of a substance, the greater the deflection (or refraction) of a light beam entering or exiting 

it. The refractive index, as we all know, refers to how quickly light travels through certain 

materials. The refractive index of the materials varies with the frequency. The refractive index 

tends to decrease, with increasing frequency. Refractive index of perovskites materials help in 

selecting proper materials for solar cell, solid-state lighting and lasing applications. In this 

figure the refractive curve is decreases downward and before 2 eV energy the curve is 

increasing up and give the large peak at 4 eV energy for KGaCl3. After this energy level the 

curve is decrease at the bottom.  The refraction index with energy is plotted in Fig. 4.9 [57]. 

 

 

  

 

 

  

  

 

 

 

 

                                                                          

                                    

                                           

Figure 4.9: Refractive index of KInCl3 and KGaCl3 
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4.4.5 Absorption coefficient 𝜶(𝝎) 

The absorption coefficient specifies how far light of a specific wavelength can reach into a 

substance before being absorbed. Light is only badly absorbed in a material with a low 

absorption coefficient, therefore if the substance is thin enough, it appears transparent to that 

wavelength. The wavelength of the absorbed light, as well as the substance, determine the 

absorption coefficient. Metal conductors have a high absorption coefficient in general. 

Semiconductors have a sharp edge in their absorption coefficient because light with energy 

below the band gap does not have enough energy to push an electron from the valence band 

into the conduction band. As a result, none of this light is absorbed. For photons with energy 

above the band gap, the absorption coefficient is not constant, but it is still highly dependent 

on wavelength. The probability of absorbing a photon is proportional to the possibility of a 

photon and an electron interacting in a way that causes them to move from one energy band to 

the next [58].  

  

 

 

 

  

   

 

   

 

 

 

 

                                                                             

Fig 4.10. Absorption coefficient of KInCl3 and KGaCl3 
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The absorption coefficient, α is related to the extinction coefficient, k by the following formula 

𝛼 =
4𝜋𝑘

𝜆
 

This equation is the absorption coefficient equation. Where λ is the wavelength. Absorption 

coefficient computed for KInCl3 and KGaCl3 compounds are presented in figure 4.10. 

Fig 4.10 shows that the absorption curves are continuously increasing with energy (eV) level 

to the above on from after 2 eV energy. The visible light range is (1.8-3.1) eV. In this figure 

the two curve values are zero at the visible light range so that is means that both of these 

material cannot absorbed the visible light. So both of this materials are good absorber and good 

conductor the KGaCl3 curve has much absorption coefficient than the KInCl3 curve. [58, 59]. 
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Chapter 5 

 

Conclusions 

 

 

We have performed first principles calculation to investigate the electronic and optical 

properties of perovskite KInCl3 and KGaCl3. In our calculation, we have used density 

functional investigations for halide perovskite of KInCl3 and KGaCl3 which are performed by 

using the full potential linearized augmented plane wave (FP-LAPW) method and PBE-GGA 

method as embodied in WIEN2k code. Then the electronic properties of the optimized state 

ware analyzed such as band gap energy, the density of states (DOS). The optical properties 

such as real and imaginary dielectric tensor, reflectivity, optical conductivity, refractive index 

and absorption coefficient. Using lattice parameters we find the crystal structure. We calculate 

the band structure and the total density of state and shows that below the Fermi level. In the 

band structure there is no band gap, where the conduction band enter into the valance band 

across the Fermi level. These perovskite materials are metallic types. Absorption spectra and 

enhanced integrated absorption coefficient (IAC) recorded. Perovskite materials are effective 

which utilize in future photovoltaic applications. 

 

 

 

 



38 
 

 

                                         

 

 Bibliography 

 

[1] K.A. Parrey, T. Farooq, S.A. Khan, U. Farooq, A. Gupta, Computational Condensed  

      Matter16(1 – 8) (2019), e00381. 

[2] Y. Li, X. Gong, P. Zhang, X. Shao, Chem. Phys. Lett. 716 (2019) 76–82. 

[3] Yang, W. S.; Park, B. W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.;  

      Seo, J.; Kim, E. K.; Noh, J. H.; et al. Iodide Management in Formamidinium-LeadHalide- 

      Based Perovskite Layers for Efficient Solar Cells. Science 2017, 356 (6345), 1376–1379.  

 [4] Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. Il.  

      HighPerformance Photovoltaic Perovskite Layers Fabricated through Intramolecular  

      Exchange. Science 2015, 348 (6240), 1234–1237. 

[5]  Sadhanala, A.; Deschler, F.; Thomas, T. H.; Dutton, S. E.; Goedel, K. C.; Hanusch, F. C.;  

      Lai, M. L.; Steiner, U.; Bein, T.; Docampo, P.; et al. Preparation of Single Phase Films of  

     CH3NH3Pb (I1-xBrx) 3 with Sharp Optical Band Edges. J. Phys. Chem. Lett. 2014, 5  

     (15), 2501-2505. 

[6] Pazos-Outon, L. M.; Szumilo, M.; Lamboll, R.; Richter, J. M.; Crespo-Quesada, M.;    

      Abdi-Jalebi, M.; Beeson, H. J.; Vru ini, M.; Alsari, M.; Snaith, H. J.; et al. Photon    

      Recycling in Lead Iodide Perovskite Solar Cells. Science 2016, 351 (6280), 1430– 1433. 

[7] Richter, J. M.; Abdi-Jalebi, M.; Sadhanala, A.; Tabachnyk, M.; Rivett, J. P. H.; m   

      PazosOutón L. M.; Gödel, K. C.; Price, M.; Deschler, F.; Friend, R. H. Enhancing  



39 
 

      Photoluminescence Yields in Lead Halide Perovskites Perovskites by Photon Recycling  

      And Light Out-Coupling.Nat. Commun. 2016, 7, 13941 

[8] Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens,  

     T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-Hole Diffusion Lengths Exceeding  

     1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 2013, 342  

      (6156),  341–344. 

[9] Tan, Z.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.;  

      Sadhanala, A.; Pazos, L. M.; Credgington, D.; et al. Bright Light-Emitting Diodes Based  

      On Organometal Halide Perovskite. Nat. Nanotechnol. 2014, 9 (9), 687–692. 

[10] Lin, Jia; Chen, Hong; Gao, Yang; Cai, Yao; Jin, Jianbo; Etman, Ahmed S.; Kang,  

        Joohoon; Lei, Teng; Lin, Zhenni; Folgueras, Maria C.; Quan, Li Na; Kong, Qiao;  

        Sherburne, Matthew; Asta, Mark; Sun, Junliang; Toney, Michael F.; Wu, Junqiao; Yang,  

        Peidong (2019). Pressure- Induced semiconductor-to-metal phase transition of a charge- 

        ordered Indium halide Perovskite. Proceedings of the National Academy of Sciences,  

        116(47), 23404–23409. doi:10.1073/pnas.1907576116.     

[11] C.R. Kalaiselvi,N. Muthukumarasamy, Dhayalan Velauthapillai,Misook Kang,T.S.  

        Senthil (15 May 2018). Importance of halide perovskites for next generation solar cells. 

        https://doi.org/10.1016/j.matlet.2018.02.089 

[12] K. Capelle. A bird's-eye view of density-functional theory. ar Xiv:cond-mat, 0211443v5,  

       2006. 

[13] W. Koch and M.C. Holthausen. A Chemists's Guide to Density Functional Theory.  

        Wiley-VCH, 2001. 

[14] W. Kohn. Nobel lecture: Electronic structure of matter - wave functions and density  

       Functional. Reviews of Modern Physics, 71:12531266, 1999. 

https://doi.org/10.1016/j.matlet.2018.02.089


40 
 

[15] D.J. Gri-ths. Introduction to Quantum Mechanics. Pearson, 2005. 

[16] W. Kohn and L.J. Sham. Self-consistent equations include exchange and correlation   

        Effects. Physical Review, 140:A1133A1138, 1965.         

[17] Karlheinz Schwarz. DFT calculations of solids with LAPW and WIEN2k. Journal of  

       Solid State Chemistry, 176:319–328, 2003. 

[18] V.P. Gupta. Principles and applications of quantum chemistry. Academic press, 2016. 

[19] E. Schrödinger. An undulatory theory of the mechanics of atoms and molecules.  

        Physical Review, 28:1049–1070, 1926. 

[20] F. Schwabl. Quantenmechanik: Eine einfhrung (German). Springer, 2007. 

[21] D.J. Griffiths. Introduction to Quantum Mechanics. Pearson, 2005. 

[22] M. Born. On the quantum mechanics of collision processes (german). Zeitschrift fuer     

        Physik, 37:863–867, 1926. 

[23] W. Koch and M.C. Holthausen. A chemists’s guide to density functional theory. Wiley- 

        VCH, 2001 

[24] W. Pauli. The connection between spin and statistics. Phys. Rev., 58:716–722, 1940. 

[25] A. Jabs. Connecting spin and statistics in quantum mechanics. Found. Phys., 40:776– 

        792, 2010. 

[26] W. Pauli. On the connexion between the completion of electron groups in an atom with  

        The Complex structure of spectra. Zeitschrift Physik, 31:765, 1925. 

[27] N. Zettili. Quantum mechanics: Concepts and applications. Wiley-VCH, 2009. 

[28] K. Capelle. A bird’s-eye view of density-functional theory. arXiv:cond-mat, 2006. 

[29] D.A. McQuarrie and J.D. Simon. Physical Chemistry: A Molecular Approach.  

        University Sciency Books, 1997. 

 



41 
 

[30] M. Born and R. Oppenheimer. On the quantum theory of molecules (german). Annalen  

         Der Physik, 389:457–484, 1927. 

[31] T. Flie¨ybach. Mechanik: Lehrbuch zur theoretischen physik I (german). Spektrum,    

        2009. 

 [32] P.A.M. Dirac. A new notation for quantum mechanics. Mathematical Proceedings of  

        Cambridge Philosophical Society, 35:416–418, 1939. 

[33] C.B. Lang and N. Pucker. Mathemathische methoden in der physik (german). Spektrum,  

       2005. 

[34] W. Koch and M.C. Holthausen. A Chemists's Guide to Density Functional Theory.  

         Wiley-VCH, 2001. 

[35] A. Szabo and N.S. Ostlund. Modern Quantum Chemistry. McGraw-Hill, 1989.  

[36] W. Kohn. Nobel lecture: Electronic structure of matter - wave functions and density  

        Functionals. Reviews of Modern Physics, 71:12531266, 1999. 

[37] P.O. Löwdin. Scaling problem, virial theorem and connected relations in quantum  

        Mechanics. Journal of Molecular Spectroscopy, 3:4666, 1959. 

[38] M. Odelius and I. Josefsson. Quantum chemistry - lecture notes, 2009. 

[39] Frank Jensen. Introduction to Computational Chemistry. John Wiley & Sons, Ltd., 2007. 

[40] Zhiping Yin. Microscopic mechanisms of magnetism and superconductivity studied  

        From First principle calculations. Pages 7, 8, 2009. 

[41] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Physical Review,  

        136:B864B871,1964. 

[42] A. Berger. Current-Density Functional in Extended Systems. PhD thesis, Rijksuni- 

        Versiteit Groningen, 2006. 

 



42 
 

[43] W. Kohn. Proceedings of the International School of Physics "Enrico Fermi", LXXXIX:  

        4pp, 1985. 

[44] Nathan Argaman and Guy Makov. Density functional theory-an introduction. American  

       Journal of Physics, 1998. 

[45] Zenebe Assefa Tsegaye. Density functional theory studies of electronic and optical  

       properties Of ZnS alloyed with Mn and Cr. Condensed Matter Physics, pages 11–13,  

       2012. 

[46] Errol G. Lewars. Computational Chemistry: Introduction to the Theory and Applications  

       of Molecular and Quantum Mechanics. Springer, 2010. 

[47] Kh. Kabita and B. Indrajit Sharma. First principles study on structural, phase transition  

       and Electronic structure of zinc sulfide ZnS within LDA, GGA and mBJ potential.  

        Journal of Physics, 2016. 

[48] L. Mehdaouia, R. Miloua, M. Khadraoui, M.O. Bensaid, D. Abdelkader, F. Chiker, A.  

        Bouzidi, Phys. B Condens. Matter 564 (2019) 114–124. 

[49] D. Jain, S. Chaube, P. Khullar, S.G. Srinivasan, B. Rai, Phys. Chem. Chem. Phys. 21  

       (2019) 19423–19436. 

[50] K. Benyahia, S. Bouchikhi, S. Bekhechi, Phys. Sci. Biophys. Journal 3 (2019) 1–6. 

[51] Tatu Ra janiemi. Electronic and optical properties of TiO2 nanoclusters. 2016. 

[52] Javad Mousavi and M.R. Abolhasani. Calculation of the structural, electrical, and optical  

       Properties of κ-Al2O3 by density functional theory. Journal of Physics, 2008. 

[53] Keith M. Glassford and James R. Chelikowsky. Structural and electronic properties of  

       Titanium dioxide. Physical Review B, 46, 1992. 

[54] D.R. Penn, Phys. Rev. 128 (1962) 2093–2097. 

[55] A.S. Olayinka and W. Nwankwo. Comparative study of DFT and DFT-D methods for  

        Electronic and optical properties of zinc-blende zinc sulfide (zb-ZnS). 9, 2019. 

 

 



43 
 

[56] Hamza El Kouch Jamal Sayah, Larbi El Farh and Allal Challioui. Electronic and Optical  

       Properties of Ramsdellite TiO2 through mBJ Potential. International Journal of  

       Nanoelectronics and Materials, 11:25–32, 2018. 

 

[57] M. R. Abolhassani S. J. Mousavi, S. M. Hosseini and S. A. Sebt. Calculation of the  

       Structural, electrical and optical properties of κ-Al2O3 by density functional theory. 

[58] A. O. Isyaku, “Structural, Electronic and Optical Properties of Cu 2 Sns 3 Solar Absorber:  

        A First-Principle Density Functional Theory Investigation,” 2019, [Online]. Available:  

        http://repository.aust.edu.ng/xmlui/handle/123456789/4937. Chinese Journal of Physics,  

        46, 2008. 

[59] M. Roknuzzaman, K. Ostrikov, K.C. Wasalathilake, C. Yan, H. Wang, T. Tesfamichael, 

       Org. Electron. 59 (2018) 99–106. 

[60] A. Shukla, V.K. Sharma, S.K. Gupta, A.S. Verma, Mater. Res. Express 6 (2019) 126323. 

 

 

 

 

 

 

 

 

                  

                 

 

 

 

 

 

 

 


