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Abstract 

 

 

We report structural, electronic, optical, and mechanical properties of cubic perovskite RbInX3 

(X=Cl, Br) are calculated using the full-potential linearized augmented plane wave method in 

the density functional theory as implemented in WIEN2k code is successfully predicting. The 

exchange-correlation potential is evaluated using generalized gradient approximation. The 

calculations of electronic band structure, the density of states show that both compounds have 

no bandgap. The density of states also revealed the metallic nature of these compounds.  We 

have derived the bulk modulus for RbInCl3. We have found that the elastic constant C11 and 

C12 are in good correlation with the bonding properties. Bulk modulus B was determined based 

on the computed values of independent elastic constants C11 and C12. According to our result, 

both compounds have a metallic appearance. These perovskite compounds are excellent 

metallic conductors and photovoltaic application is not possible.  
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Chapter 1 

 

 

Introduction 

  

We are presenting a project assignment on the structural, electronic, elastic, and optical 

properties of perovskite materials RbInX3 (X = Cl, Br) in this project we tried to give all the 

important things and information about the project. A project RbInX3 (X = Cl, Br) is an activity 

that helps us to improve our planning and critical thinking ability. The system name is RbInX3 

(X= Cl, Br) of perovskite-type, a compound crystallizing in a cubic system. The cubic crystals 

of RbInX3 (A is a cation with a different valance or is the second most reactive metal, B is a 

conductive metal that is not an alkali metal and X is a halide) type which crystallize in a 

perovskite-like structure are acousto-optic materials of interest [1]. We have done systematic 

calculations for the lead-free perovskite RbInX3 (X = Cl, Br) in this paper. Perovskite materials 

have emerged as the most promising and efficient low-cost energy materials for various 

optoelectronic and photonic device applications. 

Perovskite materials' unusual physical features, such as high absorption coefficient, long-range 

ambipolar charge transfer, low exciton-binding energy, high dielectric constant, ferroelectric 

properties, and so on, have sparked a lot of interest in optoelectronic and photovoltaic 

applications. Different classes of perovskite materials, such as chalcogenide perovskite 

(AMO3) and halide perovskite (ABX3) that are again classified as alkali halide and organometal 

halide, were widely studied. The superior ferroelectric and superconducting properties of 
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oxide-based perovskites were extensively studied for various applications. In the case of metal 

halide perovskites, mainly Rubidiam Indiam halide perovskites are the most popular ones [2]. 

Although the most common perovskite compounds contain oxygen, there are a few perovskite 

compounds that form without oxygen. Chloride perovskites such as RbInX3 (X=Cl, Br) are 

well known. 

 Density-functional theory (DFT) is a successful theory to calculate the electronic structure of 

atoms, molecules, and solids. Its goal is the quantitative understanding of material 

propertiesfrom the fundamental laws of quantum mechanics. DFT is a method of obtaining an 

approximate solution to the Schrodinger equation of a many-body system. We like the method 

such as density functional theory because it has a good ratio between performance and 

computational cost. This is still one of the major advantages of the method Hartree and Fock 

took the initial steps toward solving the complicated and analytically inaccessible many-body 

Schrödinger equation by developing a set of self-consistent, wave-function based equations 

allowed for iterative calculations of energy and other necessary parameters [3].  

The WIEN2k package is a computer program written in Fortran which performs quantum 

mechanical calculations on periodic solids. It uses the full-potential (linearized) augmented 

plane-wave and local-orbitals [FP-(L)APW+lo] basis set to solve the Kohn–Sham equations of 

density functional theory. WIEN2k was originally developed by Peter Blaha and Karlheinz 

Schwarz from the Institute of Materials Chemistry of the Vienna University of Technology. 

The first public release of the code was done in 1990 [4]. Then, the next releases were WIEN93, 

WIEN97, and WIEN2k [5]. WIEN2k uses density functional theory to calculate the electronic 

structure of a solid. It is based on the most accurate scheme for the calculation of the bond 

structure-the full potential energy (linear) augmented plane wave ((L) APW) + local orbit (lo) 

method. Generalized gradient approximation (GGA) can be used in density universal 

information. 

In this chapter, we start by introducing RbInX3 (X= Cl, Br). In the chapter, we have discussed 

perovskite materials. In chapter 2 we discussed the basic quantum mechanics that the wave 

function is the first step in the process. This part contains the article about the Schrödingers 

groundbreaking equation, time-dependent equation, the wave function, the Hartree Fock 

approach, and the limitations and fallings of the Hartree Fock approach. Chapter 3 contains the 

theoretical investigations of density functional theory (DFT). We have discussed a new base 

variable – the electron density, Thomas fermi theory, The Hohenberg – Khon theorems, The 
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khon sham equations, The exchange-correlation Functionals, Local density Approximation 

(LDA), Generalized-Gradient Approximation (GGA). In chapter 4 the calculation part of this 

project is presented. Firstly we will discuss the Crystallographic structure of both perovskite 

materials like RbInX3 (Cl, Br). The full potential linearized augmented plane wave (FP-

LAPW) approach is used throughout the Wien2k code to complete all calculations. The space 

group 221 Pm-3m was used to determine the atomic location and space group of the RbInX3 

(X=Cl, Br) chemical in the unit cell. RbInX3 (X=Cl, Br) is a perovskite-type chemical with 

cubic crystallization. We were tested on all of the substances that were investigated. We 

calculate the self-consistent field (SCF), the bandstructure, the density of state (DOS). 

According to our result, RbInX3 (X=Cl, Br) is a metal and has no bandgap. Therefore, 

electronic, optical, elastic, and structural properties of RbInX3 (X= Cl, Br) are still undercover; 

hence the compound needs further investigation. The elastic constants (C11, C12), bulk modulus 

are also calculated and discussed. Bulk modulus is a very important mechanical property of 

solid materials. It indicates the ability of a material to resist compression under applied force 

and also represents the nature of chemical bonding in solids. Also, we discuss the optical 

properties of studied compounds are explained in terms of real & imaginary dielectric tensor, 

optical absorption, reflectivity, and refractivity. The paper aims to obtain electronic, structural, 

elastic, and optical properties of RbInX3 (X= Cl, Br) and to give some theoretical information 

about the compound for further investigations. Finally, in chapter 5 we discussed the overall 

summary of this report.                                                                          
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Chapter 2 

 

Basic Quantum Mechanics 

  

 

2.1 Schrödinger groundbreaking equation 

In 1926, Erwin Schrödinger attempted to describe matter waves by using de Broglie's 

connections to describe hypothetical plane waves, resulting in the most generic form of the 

famous equation named after him, the time-dependent Schrödinger equation [6]. 

iħ 
𝜕

𝜕𝑡
Ψ(𝑟, t) = �̂�Ψ(𝑟, t) (2.1) 

Because using a complete relativistic formulation of the formula is often impractical, 

Schrödinger proposed a non-relativistic approximation, which is now widely used, particularly 

in quantum chemistry. 

Using the Hamiltonian for a single particle  

 �̂� = �̂� + �̂� = - 
ħ2

2𝑚
�̅�2 + V(𝑟, t) 

 

                (2.2) 

Leads to the (non-relativistic) time-dependent single-particle Schrödinger equation 

                                                    iћ 
𝜕

𝜕𝑡
Ѱ(𝑟, t) = [−

ћ2

2𝑚
 �⃗⃗�

2
+ V (𝑟, t) ] �̂�Ѱ(𝑟, t)                            (2.3)                                                     

Only non-relativistic instances will be studied in this thesis from now on.   
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�̂� = ∑ −
𝑝𝑖

2

2𝑚𝑖

𝑁
𝑖=1  + V (𝑟1,𝑟2 … . , 𝑟𝑁 , 𝑡) = −

ћ2

2
 ∑

1

𝑚𝑖

𝑁
𝑖=1  + V (𝑟1, 𝑟2 … . 𝑟𝑁 , 𝑡). 

(2.4) 

The corresponding Schrödinger equation reads 

  

iћ
𝜕

𝜕𝑡
Ѱ(𝑟1, 𝑟2 … . , 𝑟𝑁 , 𝑡) = [ − 

ћ2

2
 ∑

1

𝑚𝑖

𝑁
𝑖=1  𝛻𝑖

2
+ V (𝑟1, 𝑟2 … . 𝑟𝑁 , 𝑡) ] Ѱ(𝑟1, 𝑟2 … . , 𝑟𝑁 , 𝑡)        (2.5)    

2.2 Time-independent equation 

The solutions of the time-independent Schrödinger equation, in which the Hamiltonian has no 

time dependence (which implies a time-independent potential V(𝑟1, 𝑟2 …….,𝑟𝑁) and the 

solutions, therefore, describe standing waves which are called stationary states or orbitals. The 

time-independent Schrödinger equation is not only simpler to solve, but understanding its 

solutions also provides essential insight into how to solve the time-dependent Schrödinger 

equation. 

The separation of variables approach is used to obtain the time-independent equation, in 

which the spatial and temporal parts of the wave function are separated [7].        

Ѱ(𝑟1, 𝑟2 … . , 𝑟𝑁 , 𝑡) =  Ѱ(𝑟1, 𝑟2 … . , 𝑟𝑁) τ (t) = Ѱ(𝑟1, 𝑟2 … . , 𝑟𝑁). 𝑒−𝑖𝜔𝑡                 (2.6) 

In addition, the L.H.S of the equation reduces to the Hamiltonian's energy eigenvalue 

multiplied by the wave function, yielding the general eigenvalue equation. 

                    EΨ (𝑟1, 𝑟2 …..,𝑟𝑁, t)   = �̂� Ψ(𝑟1, 𝑟2 …..,𝑟𝑁, t                                      (2.7) 

The Schrödinger equation is rewritten using the many-body Hamiltonian once again 

EѰ(𝑟1, 𝑟2 … . , 𝑟𝑁) = [ − 
ћ2

2
 ∑

1

𝑚𝑖

𝑁
𝑖=1  𝛻𝑖

2+ V (𝑟1, 𝑟2 … . , 𝑟𝑁
 ] Ѱ(𝑟1, 𝑟2 … . , 𝑟𝑁)       (2.8) 

2.3 The wave function  

The word "wave function" was used several times in the last section. As a result, and to better 

comprehend what follows, a closer examination of the wave function is undertaken. 

The first and most essential premise is that a particle's state is fully represented by its (time-

dependent) wave function, which means that the wave function contains all information about 

the particle's state. 
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The discussion will be limited to the time-independent wave function for the sake of simplicity. 

When it comes to physical quantities, there's always the subject of possible interpretations as 

well as observations. A basic premise of the Copenhagen interpretation of quantum mechanics 

is the Born probability interpretation of the wave function, which provides a physical 

interpretation for the square of the wave function as a probability density.                                             

                                                                |Ѱ(𝑟1, 𝑟2 … . , 𝑟𝑁)|2, 𝑑𝑟1𝑑𝑟2 … 𝑑𝑟𝑁                                    (2.9) 

Equation 2.9 describes the probability that particles 1, 2,..., N are located simultaneously in the 

corresponding volume element 𝑑 𝑟1, 𝑑 𝑟2, ….., 𝑑𝑟𝑁 , [8].  It is also important to think about what 

occurs if two particles' locations are swapped. Following purely logical reasoning, such an 

exchange cannot affect the overall probability density, i.e. 

|Ѱ(𝑟1, 𝑟2 … . . , 𝑟𝑖, 𝑟𝑗 , . . , 𝑟𝑁)|2 = |Ѱ(𝑟1, 𝑟2 … . . , 𝑟𝑗 , 𝑟𝑖, . . , 𝑟𝑁)|2 (2.10) 

The wave function's behavior during a particle exchange can only be one of two a result of the 

exchange. This is the same as bosons (particles with integer or zero spins) things. The first is 

the asymmetrical wave function, which remains unchanged as 

Another alternative is an anti-symmetrical wave function, in which a significant change is 

caused by the exchange of two particles, which corresponds to fermions [9-10]. Only electrons, 

which are fermions, are of interest in this book. The Pauli principle asserts that no two electrons 

can occupy the same state, where state refers to the orbital and spin components of the wave 

function. (An explanation of the term spin coordinates will be provided later). The anti-

symmetry principle can be thought of as Pauli's quantum-mechanical formalization. In the 

description of spectra, there are several theoretical concepts to consider (e.g.alkaline doublets) 

[11]. The normalizing of the wave function is another result of the probability interpretation. If 

equation (9) describes the chance of finding a particle in a volume element, then using the 

entire range of coordinates as the volume element must yield a probability of one, implying 

that all particles must be found someplace in space. This is the same as the wave function's 

normalizing condition 

         ∫ 𝑑 𝑟1,  ∫ 𝑑 𝑟2, … …. ∫ 𝑑𝑟𝑁 |Ψ (𝑟1, 𝑟2 …..,𝑟𝑁 |2 = 1                              (2.11) 

Equation (11) reveals the specifications that a wave function must meet to be physically 

acceptable. Wave functions must be square-integrable and continuous over the entire spatial 

range.[12] Calculating the expectation values of operators with a wave function also yields the 



7 
 

expectation value of the appropriate observable for that wave function, which is a very useful 

trait[13]. For an observable O (𝑟1, 𝑟2 …..,𝑟𝑁) this can generally be written as 

          O =< O> = ∫ 𝑑 𝑟1,  ∫ 𝑑 𝑟2, … …. ∫ 𝑑𝑟𝑁 ψ∗ (𝑟1, 𝑟2 …..,𝑟𝑁)�̂�Ψ (𝑟1, 𝑟2 …..,𝑟𝑁)                 (2.12) 

2.5 The Hartree-Fock approach 

Variational calculus, which is related to the least-action principle of classical mechanics, is a 

very valuable tool for determining a good strategy for approximating the analytically not 

accessible solutions to many-body problems. The ground state wave function 0 corresponds to 

the lowest energy of the system𝐸0, and was calculated using variational calculus. It is possible 

to approach A good resource for learning about the fundamentals of variational calculus is the 

literature.T. Fliebach [14] has given this information. 

As a result, for the time being, only the electronic Schrödinger equation is of importance, so 

we will focus on that in the following parts  �̂� ≡ �̂�𝑒𝑙, 𝐸 ≡ 𝐸𝑒𝑙.          

                                             𝐸𝑡𝑟𝑖𝑎𝑙 ≥  𝐸0                                                     ( 2.14) 

With 

 𝐸𝑡𝑟𝑖𝑎𝑙 = ∫ 𝑑 𝑟1,  ∫ 𝑑 𝑟2, … …. ∫ 𝑑𝑟𝑁 𝛹𝑡𝑟𝑖𝑎𝑙
∗ (𝑟1, 𝑟2 …..,𝑟𝑁)�̂� 𝛹𝑡𝑟𝑖𝑎𝑙(𝑟1, 𝑟2 …..,𝑟𝑁)    (2.15) 

 And 

 𝐸𝑜  = ∫ 𝑑 𝑟1,  ∫ 𝑑 𝑟2, … …. ∫ 𝑑𝑟𝑁 ψ∗ (𝑟1, 𝑟2 …..,𝑟𝑁)�̂� Ψ (𝑟1, 𝑟2 …..,𝑟𝑁)                    ( 2.16) 

The terms listed above are inconvenient to work with most of the time. The bra-ket notation 

of Dirac is introduced in the following for the sake of succinct notation. The reader is 

directed to the original publication for a more complete description of this notation [15]. 

In that notation, equations (2.20) to (2.22) are expressed as 

〈Ψtrial|Ĥ|Ψtrial〉 =  Etrial ≥  E0  =〈Ψ0|Ĥ|Ψ0〉 (2.17) 

Proof: The eigenfunctions ψi of the Hamiltonian �̂� (each corresponding to an energy 

eigenvalue Ei) form a complete basis set, therefore any normalized trial wave function ψtrial can 

be expressed as a linear combination of those eigenfunctions 

Ψtrial = ∑ 𝜆𝑖𝑖 𝜓𝑖                                                             ( 2.18) 
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The eigenfunctions are assumed to be orthogonal and normalized in this case. As a result of 

the request to normalize the trial wave function, it follows that 

⟨Ѱ𝑡𝑟𝑖𝑎𝑙  |Ѱ𝑡𝑟𝑖𝑎𝑙  ⟩ =  ⟨∑ 𝜆𝑖𝑖 Ѱ𝑖  | ∑ 𝜆𝑗𝑗 Ѱ𝑗  ⟩ = ∑ ∑ 𝜆𝑖
∗

𝑗 𝜆𝑗𝑖 ⟨Ѱ𝑖  |Ѱ𝑗  ⟩ =  |𝜆𝑗|
2
    (2.19) 

On the other hand, following (2.17) and (2.19) 

𝐸𝑡𝑟𝑖𝑎𝑙  =  ⟨Ѱ𝑡𝑟𝑖𝑎𝑙  |𝐻 ̂|Ѱ𝑡𝑟𝑖𝑎𝑙  ⟩ =  ⟨∑ 𝜆𝑖𝑖 Ѱ𝑖  |𝐻 ̂| ∑ 𝜆𝑗𝑗 Ѱ𝑗  ⟩ = ∑ 𝐸𝑗  |𝜆𝑗|
2

  𝑗        (2.20) 

In addition, the ground state energy 𝐸0   is the lowest possible energy per definition, and 

therefore has the smallest eigenvalue (𝐸0  ≤  𝐸𝑖), it is found that  

𝐸𝑡𝑟𝑖𝑎𝑙  = ∑ 𝐸𝑗  |𝜆𝑗|
2

  𝑗 ≥  𝐸0  ∑  |𝜆𝑗|
2

𝑗                                     (2.21) 

what is similar to an equation (2.17) 

One of the main concepts of density functional theory is the mathematical framework employed 

above, i.e. rules that assign numerical values to functions, also known as functional. A function 

receives a numerical input and produces a numerical output, whereas a functional receives a 

function and produces a numerical output [16].  

Equations (2.13 to 2.21) also contain that a search for the lowest energy value when applied on 

all allowed N- electron wave functions will always provide the ground-state wave function. 

Expressed in terms of functional calculus, where Ѱ → N addresses all allowed N-electron 

wave functions, this indicates [17]. 

𝐸0  = 𝐸[Ѱ]Ѱ→N
𝑚𝑖𝑛 =  ⟨Ѱ|𝐻 ̂|Ѱ⟩

Ѱ→N

𝑚𝑖𝑛
=  ⟨Ѱ|𝑇 ̂ +  𝑉 ̂ +  𝑈 ̂  |Ѱ⟩

Ѱ→N

𝑚𝑖𝑛
.               (2.22) 

Due to the vast number of alternative wave functions on one hand and computer power and 

time constraints on the other, this search is essentially unfeasible for N-electron systems. What 

is possible is the restriction of the search to a smaller subset of the possible wave function, as 

it is done in the Hartree-Fock approximation.  

In the Hartree-Fock approach, the search is restricted to approximations of the N-electron wave 

function by an antisymmetric product of N (normalized) one-electron wave-functions, the so-

called spin-orbitals  χ𝑖 (�̅�𝑖 ). A wave function of this type is called Slater-determinant and reads 

[17, 18]. 
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Ѱ0  ≈  ∅𝑆𝐷  = (𝑁!)−
1

2  [
χ1(�̅�1 ) ⋯ χ𝑁(�̅�1 )

⋮ ⋱ ⋮
χ1(�̅�𝑁 ) ⋯ χ𝑁(�̅�𝑁 )

]                                        (2.23) 

It is important to notice that the spin-orbitals χ𝑖 (�̅�𝑖 ) are not only depending on spatial 

coordinates but also on a spin coordinate which is introduced by a spin function, �̅�𝑖 =  �̅�𝑖 , 𝑠. 

Returning to the variational principle and equation (2.22), the ground state energy 

approximated by a single Slater determinant becomes 

𝐸0  =  𝐸[∅𝑆𝐷  ]∅𝑆𝐷  →N
𝑚𝑖𝑛 =  ⟨∅𝑆𝐷  |𝐻 ̂|∅𝑆𝐷  ⟩∅𝑆𝐷  →N

𝑚𝑖𝑛
=  ⟨∅𝑆𝐷  |𝑇 ̂ +  𝑉 ̂ +  𝑈 ̂  |∅𝑆𝐷  ⟩∅𝑆𝐷  →N

𝑚𝑖𝑛
    (2.24) 

A general expression for the Hartree-Fock Energy is obtained by usage of the Slater 

determinant as a trial function  

  𝐸𝐻𝐹 =  ⟨∅𝑆𝐷  |𝐻 ̂|∅𝑆𝐷  ⟩ =  ⟨∅𝑆𝐷  |𝑇 ̂ +  𝑉 ̂ +  𝑈 ̂  |∅𝑆𝐷  ⟩                           (2.25)   

For the sake of brevity, a detailed derivation of the final expression for the Hartree-Fock energy 

is omitted. It is a straightforward calculation found for example in the Book by Schwabl [19]. 

The final expression for the Hartree-Fock energy contains three major parts: [17].    

𝐸𝐻𝐹 =  ⟨∅𝑆𝐷  |𝐻 ̂|∅𝑆𝐷  ⟩ =  ∑ ⟨𝑖|ћ̂|𝑖⟩𝑁
𝑖 +  

1

2
 ∑ ∑ [⟨𝑖𝑖|𝑗𝑗⟩ − ⟨𝑖𝑗|𝑗𝑖⟩]𝑁

𝑗
𝑁
𝑖                 (2.26) 

With             

                     ⟨𝑖|ћ̂|𝑖⟩ =  χ 
∗

𝑖 
(�̅�𝑖 ) [−

1

2
∇𝑖

2⃗⃗⃗⃗⃗ −  ∑
𝑍𝑘

𝑟𝑖𝑘

𝑀
𝑘=1 ] χ𝑖 (�̅�𝑖 ) 𝑑�̅�𝑖                                        (2.27) 

   ⟨𝑖𝑖|𝑗𝑗⟩ =  ∬|χ𝑖 (�̅�𝑖 )|2 1

𝑟𝑖𝑗
 |χ𝑗(�̅�𝑗)|

2 
 𝑑�̅�𝑖 𝑑�̅�𝑗 ,                                                   (2.28) 

⟨𝑖𝑖|𝑗𝑗⟩ =  ∬ χ𝑖 (�̅�𝑖 ) χ 
∗

𝑗
(�̅�𝑗 ) 

1

𝑟𝑖𝑗
 χ𝑗(�̅�𝑗) χ 

∗
𝑖 

(�̅�𝑖 ) 𝑑�̅�𝑖 𝑑�̅�𝑗                                 (2.29) 

The kinetic energy and nucleus-electron interactions are represented by the first term, with ℎ̂  

designating the Hamiltonian's single-particle contribution. The electron-electron interactions 

are represented by the second and third terms. Coulomb and exchange integrals are the two 

terms used to describe them [17, 18]. Examination of equations (2.26) to (2.29) furthermore 

reveals that the Hartree-Fock energy can be expressed as a function of the spin orbitals 𝐸𝐻𝐹  = 

E[{𝜒𝑖}]. Thus, variation of the spin orbitals leads to the minimum energy [17]. 



10 
 

The spin orbitals stay orthonormal during minimization, which is a crucial feature to keep in 

mind. The Hartree-Fock equations are then restricted by using Lagrangian multipliers 𝜆𝑖  in the 

resultant equations. The reader should consult Szabo and Ostlund's book for a more complete 

explanation [17,18]. 

Finally, one arrives at  

𝑓 𝜒
𝑖

=  𝜆𝑖𝜒𝑖
                         i = 1,2,…….N                                 (2.30) 

With 

𝑓𝑖 =  −
1

2
∇𝑖

2⃗⃗⃗⃗  −  ∑
𝑍𝑘

𝑟𝑖𝑘

𝑀
𝑘=1 +  ∑ [𝐽

�̂�
𝑥𝑖⃗⃗⃗ −  𝐾�̂�𝑥𝑖⃗⃗⃗]𝑁

𝑖 =  ℎ�̂� +  �̂�
𝐻𝐹

(𝑖),      (2.31) 

the Fock operator for the i-th electron. In similarity to(2.26) to (2.29), the first two terms 

represent the kinetic and potential energy due to nucleus-electron interaction, collected in the 

core Hamiltonian ℎ�̂�, whereas the latter terms are sums over the Coulomb operators 𝐽�̂� and the 

exchange operators 𝐾�̂�with the other j electrons, which form the Hartree-Fock potential �̂�𝐻𝐹 

.There the major approximation of Hartree-Fock can be seen. The original Hamiltonian's two-

electron repulsion operator is replaced by a one-electron operator, �̂�𝐻𝐹 which describes 

average repulsion [17].  

2.6 Limitations and failings of the Hartree-Fock approach 

The number of electrons in an atom or a molecule might be even or odd. The compound is in 

a single state if the number of electrons is even and they are all in double occupied spatial 

orbitals 𝜙𝑖 Closed-shell systems are what they're called. Open-shell systems are compounds 

with an odd number of electrons and compounds with single occupied orbitals, i.e. species with 

a triplet or higher ground state. These two sorts of systems relate to two different Hartree-Fock 

techniques. 

The restricted HF technique (RHF) considers all electrons to be paired in orbitals, whereas the 

unrestricted HF method (UHF) removes this restriction entirely. Open-shell systems can 

alternatively be described using an RHF approach, in which only the single occupied orbitals 

are eliminated, resulting in a limited open-shell HF (ROHF), which is more realistic but also 

more difficult and thus less popular than UHF [17]. 
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The size of the investigated system can also be a limiting factor for calculations. Kohn states 

several M = P5 with 3 ≤ p ≤ 10 parameters for a result with us-cent accuracy in the investigation 

of the H2 system [20]. For a system with N = 100 (active) electrons, the number of parameters 

rises to 

M  =  P3N  =  3300 to 10300  ≈  10150  to  10300                                  (2.32) 

Equation (2.32) states, that the minimization of the energy would have to be performed in a 

space of at least 10150 dimensions which exceeds the computational possibilities nowadays by 

far. HF methods are therefore restricted to systems with a small number of involved electrons 

(N ≈ 10). Referring to the exponential factor in (2.32) this limitation is sometimes called 

exponential wall [20]. 

The energy produced via HF calculations is always greater than the exact ground state energy 

because a multi-electron wave function cannot be captured entirely by a single Slater 

determinant. The Hartree-Fock-limit is the most precise energy obtained using HF methods 

[17]. 

The difference between EHF and Exact is called correlation energy and can be denoted as[21]. 

𝐸𝑐𝑜𝑟𝑟
𝐻𝐹 = Emin – EHF                                                        (2.33) 

Even though Ecorr is usually small against Emin, as in the example of an N2 molecule where      

𝐸𝑐𝑜𝑟𝑟
𝐻𝐹  = 14.9eV < 0.001 · Emin,                                            (2.33) 

It has the potential to have a significant impact[22]. 

The experimental dissociation energy of the N2 molecule,  

Edits = 9.9eV < Ecorr                                                                                        (2.34) 

This translates to a significant contribution of the correlation energy to relative energies like 

reaction energies, which are of special relevance in quantum chemistry. 

The mean eld approximation utilized in the HF method contributes the most to the correlation 

energy. That is one electron moves in the average eld of the others, a method that ignores the 

fundamental correlation between electron movements. To better grasp what this means, 

consider electron repulsion at small distances, which is not addressed by a mean-field technique 

such as the Hartree-Fock method [17]. 
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Chapter 3 

 

Density functional theory 

 

 

3.1 A new base variable - the electron density 

 A broad statement about the calculation of observables was provided in section 2.3, which 

dealt with the wave function 𝜓. The subject of this section is a quantity determined similarly. 

The basic variable in density functional theory is the electron density (for N electrons) [17, 23]. 

n(𝑟) = 𝑁 ∑ ∫ 𝑑𝑥2⃗⃗⃗⃗⃗ …𝑠1  ∫ 𝑑𝑥𝑁⃗⃗ ⃗⃗ ⃗ 𝛹∗( 𝑥1⃗⃗ ⃗⃗ , 𝑥2⃗⃗⃗⃗⃗ … , 𝑥𝑁⃗⃗ ⃗⃗ ⃗)𝛹 ( 𝑥1⃗⃗ ⃗⃗ , 𝑥2⃗⃗⃗⃗⃗ … . , 𝑥𝑁⃗⃗ ⃗⃗ ⃗)           (3.1) 

The notation in (3.1) takes into account a wave function that is dependent on spin and spatial 

coordinates. The integral in the equation indicates the chance of finding a specific electron with 

any spin in the volume element 𝑑𝑟1⃗⃗⃗ ⃗ in more detail. Since the electrons are indistinguishable, N 

times the integral gives the probability that an electron is found there. The other electrons are 

represented by the wave functionΨ ( 𝑥1⃗⃗ ⃗⃗ , 𝑥2⃗⃗⃗⃗⃗ … . , 𝑥𝑁⃗⃗ ⃗⃗ ⃗) have arbitrary spin and spatial coordinates 

[17]. 

If the spin coordinates aren't taken into account, the electron density can be described as a 

measurable observable that is just reliant on spatial coordinates [20, 23]. 

n(𝑟) = 𝑁 ∫ 𝑑𝑟2⃗⃗⃗⃗ … ∫ 𝑑𝑟𝑁⃗⃗⃗⃗⃗ 𝛹∗( 𝑟1⃗⃗⃗ ⃗, 𝑟2⃗⃗⃗⃗ … , 𝑟𝑁⃗⃗⃗⃗⃗)𝛹( 𝑟1⃗⃗⃗ ⃗, 𝑟2⃗⃗⃗⃗ … . , 𝑟𝑁⃗⃗⃗⃗⃗)                    (3.2) 

which can be determined, for example, using X-ray diffraction [17]. 
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Before providing a method that uses electron density as a variable, make sure it has all of the 

relevant system information. That is to say, it must include information on the electron number 

N as well as the external potential, which is denoted by �̂� [17]. 

Integrating the electron density over the spatial variables yields the total number of electrons 

[17]. 

N = ∫ 𝑑𝑟𝑁⃗⃗⃗⃗⃗  (𝑟).                                                        (3.3) 

What has to be demonstrated is that the electron density uniquely characterizes the external 

potential, up to a certain additive constant. 

3.2 Thomas-Fermi Theory 

One of the earliest tractable schemes for solving the many-electron problem was proposed by 

Thomas and Fermi [24, 25]. In this model, the electron density n(r) is the central variable rather 

than the wave function, and the total energy of a system is written as a functional ETF [n(r)] 

where square brackets are used to enclose the argument of the functional, which in this case is 

the density. The Thomas-Fermi energy functional is composed of three terms, 

𝐸𝑇𝐹[𝑛(𝑟)] = 𝐴𝑘 ∫ 𝑛(𝑟)5/3𝑑𝑟 +   ∫ 𝑛(𝑟)𝑣𝑒𝑥𝑡(𝑟)𝑑𝑟 +  
1

2
 ∬

𝑛(𝑟)𝑛(𝑟′)

|𝑟−𝑟′|
 𝑑𝑟′                               (3.6) 

The first term is the electronic kinetic energy associated with a system of non-interacting 

electrons in a homogeneous electron gas. This form is obtained by integrating the kinetic 

energy density of a homogeneous electron gas t0 [n(r)] [26, 27]. 

      TTF [n(r)] = ∫ 𝑡0[n(r)] dr                                                 (3.7) 

Where t0[n(r)] is obtained by summing all of the free-electron energy states 𝜀 =
𝐾2

2
, up to 

the Fermi wave vector   KF= [3𝜋2𝑛(𝑟)]
1

3 

𝑡0 [n(r)] = 
2

(2𝜋)3 ∫
𝐾2

2
𝑛𝑘dk = 

1

(2𝜋)2 ∫ 𝐹𝑘4𝑑𝑘
𝑘

0
                                    (3.8) 

NK is the density of allowed states in reciprocal-space. This leads to the form given in (3.9) 

with coefficient  𝐴𝑘 =
3

10
(3𝜋2)

2

3. The power-law dependence on the density can also be 

established on dimensional grounds. The second term is the classical electrostatic energy of 
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attraction between the nuclei and the electrons, where 𝑈𝑒𝑥𝑡(𝑟) is the static Coulomb potential 

arising from the nuclei, 

𝑈𝑒𝑥𝑡(𝑟) = - ∑
𝑍𝑗

|𝑟−𝑅𝑗|

𝑀
𝑗=1                                                    (3.9) 

Finally, the third term in (3.8) represents the electron-electron interactions of the system, and 

in this case is approximated by the classical Coulomb repulsion between electrons, known as 

the Hartree energy. 

To obtain the ground state density and energy of a system, the Thomas-Fermi equation (3.8) 

must be minimized subject to the constraint that the number of electrons is conserved. This 

type of constrained minimization problem, which occurs frequently within many-body 

methods, can be performed using the technique of Lagrange multipliers. In general terms, the 

minimization of a functional F[f], subject to the constraint C[f], leads to the following 

stationary condition 

                                                             𝛿( F[f] - 𝜇𝐶[𝑓] ) = 0                                               (3.10) 

where 𝜇 is a constant known as the Lagrange multiplier. Minimizing (3.11) leads to the solution 

of the corresponding Euler equation, 

𝛿 𝐹[𝑓]

𝛿 𝑓
 - 𝜇

𝛿𝐶[𝑓]

𝛿 𝑓
 = 0                                                 (3.11) 

Applying this method to (3.7) leads to the stationary condition, 

𝛿 { 𝐸𝑇𝐹[𝑛(𝑟)] − (∫ 𝑛(𝑟)𝑑𝑟 − 𝑁) }   = 0                            (3.12) 

which yields the so-called Thomas-Fermi equations, 

5

3
𝐴𝑘𝑛(𝑟)2/3+ 𝜈𝑒𝑥𝑡(𝑟) + ∫

𝑛(𝑟′)

[𝑟−𝑟′]
 dr′- 𝜇 = 0                           (3.14) 

that can be solved directly to obtain the ground state density, Thomas-Fermi theory suffers 

from many deficiencies, probably the most serious defect is that it does not predict bonding 

between atoms [28-30], so molecules and solids cannot form in this theory. The main source 

of error comes from approximating the kinetic energy in such a crude way. The kinetic energy 

represents a substantial portion of the total energy of a system and so even small errors prove 

disastrous. Another shortcoming is the over-simplified description of the electron-electron 

interactions, which are treated classically and so do not take account of quantum phenomenon 

such as the exchange interaction. 
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3.3 The Hohenberg-Kohn Theorems 

The Hohenberg-Kohn theorems relate to any system consisting of electrons moving under the 

influence of an external potential 𝜈𝑒𝑥𝑡(𝑟) Stated simply they are as follows: 

 Theorem 1: The energy functional E [n(r)] alluded to in the first Hohenberg-Kohn theorem 

can be written in terms of the external potential  𝜈𝑒𝑥𝑡(𝑟) in the following way, 

E [n(r)] = ∫ 𝑛(𝑟) 𝜈𝑒𝑥𝑡(𝑟) dr + F [n(r)]                                         (3.15)     

     

where F[n(r)] is an unknown but otherwise universal functional of the electron 

density n(r) only. Correspondingly, a Hamiltonian for the system can be written such that the 

electron wave function 𝜓 that minimizes the expectation value  gives the ground state energy 

(assuming a non-degenerate ground state), 

E [n(r)] = 〈𝜓|�̂�|𝜓〉                                            (3.16) 

The Hamiltonian can be written as, 

�̂� = �̂� + �̂�𝑒𝑥𝑡                                                     (3.16) 

where  𝐹 ̂is the electronic Hamiltonian consisting of a kinetic energy operator �̂� and an 

interaction operator �̂�𝑒𝑒,  

�̂� =  �̂� +  �̂�𝑒𝑒                                                     (3.17) 

The proof of the first theorem is remarkably simple and proceeds by reductio ad absurdum. 

Let there be two different external potentials, 𝜈𝑒𝑥𝑡.1(𝑟)  and  𝜈𝑒𝑥𝑡,2(𝑟), that give rise to the same 

density 𝑛0(𝑟). The associated Hamiltonians, �̂�1 and �̂�2 , will therefore have different 

groundstate wave functions𝜓1and𝜓2, that each yield 𝑛0(𝑟). Using the variational 

principle [31]. together with (3.17) yields, 

𝐸1
0 < 〈𝜓2|�̂�1| 𝜓2〉 =  〈𝜓2|�̂�2| 𝜓2〉 + 〈𝜓2|�̂�1 − �̂�2| 𝜓2〉          (3.18) 

                                  =  𝐸2
0 +  ∫ 𝑛0 (𝑟)[𝜈𝑒𝑥𝑡,1(𝑟) − 𝜈𝑒𝑥𝑡,2(𝑟)]     (3.19) 

where 𝐸1
0 and 𝐸2

0 are the groundstate energies of �̂�1  and �̂�2 respectively. It is at this point that 

the Hohenberg-Kohn theorems, and therefore DFT, apply rigorously to the ground state only. 
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An equivalent expression for (3.20) holds when the subscripts are interchanged. Therefore 

adding the interchanged inequality to (3.21) leads to the result: 

𝐸1
0 +  𝐸2

0 <  𝐸2
0  +  𝐸2

0                                         (3.20) 

which is a contradiction, and as a result, the groundstate density uniquely determines the 

external potential 𝜈𝑒𝑥𝑡(𝑟), to within an additive constant. Stated simply, the electrons 

determine the positions of the nuclei in a system, and also all groundstate electronic properties, 

because as mentioned earlier 𝜈𝑒𝑥𝑡(𝑟) and N completely define �̂�. 

Theorem 2: 

The ground state energy can be obtained variationally: the density that minimizes the total 

energy is the exact ground-state density. 

The proof of the second theorem is also straightforward: as just   

shown, n(r) determines  𝑣𝑒𝑥𝑡(𝑟), N and  𝜈𝑒𝑥𝑡(𝑟) determine �̂� and therefore  𝜓. This 

ultimately means 𝜓 is a functional  n(r) of, and so the expectation value of �̂� is also a 

functional of n(r) , i.e.𝜈 

F [n(r)] = 〈𝜓|�̂�|𝜓〉                                             (3.20) 

A density that is the ground-state of some external potential is known as 𝜈-representable. 

Following from this, a 𝜈-representable energy functional 𝐸𝑢[𝑛(𝑟)] can be defined in which the 

external potential 𝜈(r) is unrelated to another density n′ (r) 

𝐸𝜈[𝑛′(r)] = ∫ 𝑛′(𝑟) 𝜈𝑒𝑥𝑡(𝑟) dr + F [n′ (r)]                            (3.21) 

and the variational principle asserts, 

  〈𝜓′|𝐹 ̂ |𝜓′ 〉  + 〈𝜓′|�̂�𝑒𝑥𝑡|𝜓′〉   >  〈𝜓|�̂�|𝜓〉 +  〈𝜓|�̂�𝑒𝑥𝑡|𝜓〉                  (3.22)                                                                                                                                  

 where 𝜓 is the wave function associated with the correct groundstate n(r). This leads to, 

∫ 𝑛′(𝑟) 𝜈𝑒𝑥𝑡(𝑟) dr + F [n′ (r)] >   ∫ 𝑛(𝑟) 𝜈𝑒𝑥𝑡(𝑟) dr + F [n(r)]               (3.23) 

   and so the variational principle of the second Hohenberg-Kohn theorem is obtained, 

𝐸𝑣[𝑛(𝑟)] >  𝐸𝑣 [𝑛(𝑟)]                                           (3.24) 

Although the Hohenberg-Kohn theorems are extremely powerful, they do not offer a way of 

computing the ground-state density of a system in practice. About one year after the seminal 
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DFT paper by Hohenberg and Kohn, Kohn and Sham [20] devised a simple method for 

carrying out DFT calculations that retains the exact nature of DFT.       

3.4 Kohn-Sham Equations 

While the Hohenberg-Kohn theorem indicates that the ground state density can be used to 

compute system attributes, it does not show how to find the ground state density. The Kohn-

Sham equations [32] propose a way to get there. Consider the ground state energy as a function 

of the charge density to get these equations. 

E [𝜌(𝑟)] = 𝑇[𝜌(𝑟)] +∫ 𝜌(𝑟) 𝜐(𝑟)dr + 𝐸𝑒𝑒                                     (3.25)    

The kinetic energy is the first term in (3.25), followed by the interaction with the external 

potential, which includes the electron-nuclei interaction, and finally, the electron-electron 

interaction, which can be represented as                              

𝐸𝑒𝑒[𝜌(𝑟)]  = 
1

2
  ∫

𝜌(𝑟)𝜌(𝑟′)

[𝑟−𝑟′]
 dr dr′  +  𝐸𝑥𝑐 [𝜌(𝑟)]                               (3.26) 

 The electron-electron electrostatic interaction is the first term on the right-hand side of (3.26), 

while the non-classical exchange-correlation energy is the second. By reintroducing wave 

functions 𝜓𝑖 with new values, Kohn and Sham were able to generate a set of single-particle 

SEs.  

𝜌(𝑟) =  ∑ 𝜓𝑖
∗𝑛

𝑖=1 (r) 𝜓𝑖(𝑟)                                           (3.27) 

where  is the number of electrons. The kinetic energy is given by 

                                                      𝑇[𝜌(𝑟)] =  − 
ħ

2

2𝑚
∑ 〈𝜓𝑖|𝛻2|𝜓𝑖〉

𝑛
𝑖                                     (3.28) 

If the wave functions must be orthonormal, i.e., 

∫ 𝜓𝑖
∗(𝑟)𝜓𝑗(𝑟)𝑑𝑟 =  𝛿𝑖𝑗                                        (3.29)    

then we can define a function of the wave functions 

𝛺[𝜓𝑖] = E [𝜌(𝑟)] − ∑ ∑ 𝜖𝑖𝑗𝑗𝑖 ∫ 𝜓𝑖
∗(𝑟)𝜓𝑗(𝑟)𝑑𝑟                        (3.30) 

where 𝜖𝑖𝑗 are Lagrange multipliers to ensure the wavefunctions are orthonormal. Minimization 

of  Ω[𝜓𝑖] concerning 𝜓𝑖
∗(𝑟) gives the Kohn-Sham equations 
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[- 
ħ2

2m
∇2+νeff(r)] ψi(r) = ϵiψi(r)                                 (3.31) 

𝜈𝑒𝑓𝑓(𝑟) = 𝜈(𝑟) + ∫
𝜌(𝑟′)

[𝑟−𝑟′]
  dr′ + 𝜈𝑥𝑐(r)                              (3.32) 

Where  𝜈𝑥𝑐(𝑟) is the exchange-correlation potential given by 

 𝜈𝑥𝑐(𝑟) =  
𝛿𝐸𝑥𝑐

𝛿𝜌(𝑟)
                                                    (3.33) 

A unitary transform is used to ensure that the wave functions 𝜙𝑖(𝑟)are orthonormal while 

transitioning from (3.30) to (3.31) [33]. As can be observed, (2.15) has the same structure as 

the Schrödinger equation for a single particle with an effective local potential 𝜈𝑒𝑓𝑓 defined in 

(2.16). This is in contrast to the Hartree-Fock equations [34], in which the one-electron 

equations have a non-local potential. 

A well-known method for solving the Kohn-Sham equations is to start with an initial trial 

electron density, as shown in Figure 3.1. Calculate these equations using the trial electron 

density. After solving the Kohn-Sham equations, we will have a set of single electron wave 

functions. These wave functions can be used to calculate the new electron density. As an input, 

the new electron density is fed into the next cycle. Finally, after each iteration, compare the 

differences in calculated electron densities. If the difference in electron density between 

consecutive iterations is less than a suitably determined convergence threshold, the solution of 

the Kohn-Sham equations is deemed self-consistent. The predicted electron density has now 

been converted to the ground state electron density, which can be used to compute the total 

energy of the system [29]. 
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Figure 3.1: Illustration of the self-consistent field (SCF) procedure for solving the Kohn-

sham equations.   

3.5 The Exchange-Correlation Functionals 

Because the true shape of the exchange-correlation functional is unknown, it's difficult to solve 

the Kohn-Sham equations. Two basic approximation methods have been implemented to 

approximate the exchange-correlation functional. The local density approximation (LDA) is 

Initial guess 

n(r) 

 

Calculate effective potential 

𝑉𝑒𝑓𝑓(𝒓) = 𝑉𝑒𝑥𝑡(𝒓) + 𝑉𝐻𝑎𝑟𝑡𝑟𝑒𝑒[𝑛] + 𝑉𝑥𝑐[𝑛] 
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∆2 + 𝑉𝑒𝑓𝑓(𝒓)] 𝜓𝑖(𝒓) = 𝜀𝑚𝑒𝜓𝑖(𝒓) 

Calculate electron density 

n(r)= ∑ Ψi
∗(𝐫)Ψi (𝐫)𝑁

𝑖=1  

Self-consistent? 

Output quantities 

Potential Energy, Static structure, Born effective 
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the first effort to estimate the exchange-correlation functional in DFT computations. The 

second well-known class of approximations to the Kohn-Sham exchange-correlation functional 

is the generalized gradient approximation (GGA). In the GGA approximation, the local 

electron density and local gradient in the electron density are included in the exchange and 

correlation energies [35]. 

3.6 Local Density Approximation (LDA) 

The local density approximation is the simplest approximation to the exchange-correlation 

functional (LDA). The energy density of a homogeneous electron gas with the same electron 

density r at every site in the molecule has the value that would be supplied by a homogeneous 

electron gas with the same electron density r at that point, according to the local density 

approximation. The term "local" was coined to distinguish the technique from those in which 

the functional is reliant not only on r but also on the gradient (first derivative) of r, with the 

distinction arising from the assumption that a derivative is a nonlocal characteristic. Local spin 

density approximation (LSDA; see below) functionals, which are an extension of the LDA 

technique, have largely replaced LDA functionals [36]. 

As a practical approximate expression for 𝐸𝑥𝑐[𝑛], Kohn and Sham suggested what is known in 

the context of DFT as the local density approximation, or LDA: 

  Exc[n(r)] ≃  ∫ drn(r)ϵxc(n(r))                                                (3.34)       

 Where 𝜖𝑥𝑐(𝑛) is the exchange-correlation energy per electron in a uniform electron gas of 

density 𝑛. this quantity is known exactly in the limit of high density and can be computed 

accurately at densities of interest, using Monte Carlo techniques.  

The addition of the potential is the only difference between the resulting computational strategy 

and a naive mean-field approach.               

                                                                 𝒗𝒙𝒄(𝒓) =
𝒅(𝒏𝝐𝒙𝒄(𝒏)

𝒅𝒏
                                                (3.35) 

At the relevant stage in the self-consistency loop, to the electrostatic potential. The ground state 

energy has the following expression: 

𝐸0 = ∑ 𝜖𝑖 − 𝐸𝑒𝑠[𝑛(𝑟)] +  ∫ 𝑑𝑟 𝑛(𝑟)(𝜖𝑥𝑐(𝑛(𝑟)) − 𝑣𝑥𝑐(𝑛(𝑟))            (3.36)

𝑁

𝑖=1

 



21 
 

The first component is the noninteracting energy, the second term is half of the Hartree 

scheme's double-counting of the electrostatic energy, and the third term is a similar subtraction 

for the exchange-correlation energy [37]. When the density is slowly changing, the local 

approximation is only valid in a theoretical sense. LDA delivers very good results even though 

atom and molecule densities are often highly inhomogeneous. LDA has been found to produce 

relatively satisfying findings for equilibrium structures, harmonic frequencies, and dipole 

moments in molecules [38]. 

3.7 Generalized-Gradient Approximation (GGA) 

In many circumstances, the creation of multiple generalized-gradient approximations (GGAs) 

that include density gradient corrections and larger spatial derivatives of the electron density 

outperforms LDA. Becke (B88), Perdew, et al, and Perdew, Burke, and Enzerhof are three of 

the most extensively utilized GGAs (PBE). The definition of the XC energy functional of GGA 

is the generalized form of LSDA to include corrections from density gradient 𝑛(𝑟)as 

          
     𝐸 𝑋𝐶

𝐺𝐺𝐴
[𝑛↑(𝑟), 𝑛↓(𝑟)] = ∫ 𝑛(𝑟)𝜖𝑋𝐶

ℎ𝑜𝑚(𝑛↑(𝑟), 𝑛↓(𝑟), |∇𝑛↑(𝑟)|, |∇𝑛↓(𝑟)|, … … )𝑑𝑟 

= ∫ 𝑛(𝑟)𝜖𝑋𝐶
ℎ𝑜𝑚(𝑛(𝑟))𝐹𝑋𝐶 (𝑛↑(𝑟), 𝑛↓(𝑟), |∇𝑛↑(𝑟)|, |∇𝑛↓(𝑟)|, … )𝑑   (3.37) 

Where 𝐹𝑋𝐶 is dimensionless and 𝜖𝑋
ℎ𝑜𝑚(𝑛(𝑟)) is the exchange energy density of the unpolarized 

HEG. 𝐹𝑋𝐶 Can be decomposed linearly into exchange contribution 𝐹𝑋 and correlation 

contribution 𝐹𝐶 as  𝐹𝑋𝐶 = 𝐹𝑋 + 𝐹𝐶 . For a detailed treatment of 𝐹𝑋 and 𝐹𝐶 indifferent GGAs. 

GGA beats LDA in forecasting molecular bond length and binding energy, crystal lattice 

constants, and other parameters in general, especially in systems with rapidly changing charge 

density. When the lattice constants from LDA calculations match actual data well, but GGA 

overestimates it, GGA overcorrects LDA results in ionic crystals [39]. 
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Chapter 4  

   

  Results and discussion 

4.1 Crystallographic structure 
The atomic position and space group information about the RbInX3 (X= Cl, Br) compound in 

the unit cell were taken from ref [40] with the space group 221_Pm-3m. RbInX3 (X= Cl, Br) is 

a perovskite-type compound crystallizing in a cubic system.  

Table 4.1: Optimized lattice parameters and Wyckoff positions for cubic RbInX3 (X = Cl, Br). 

Perovskite 

Compounds 

Optimized             

Lattice 

Parameters (Å) 

Wyckoff Positions 

Atom X Y Z 

RbInCl3 5.4621 

Rb 0 0 0 

In 0.5 0.5 0.5 

Cl3 0.5 0.5 0 

RbInBr3 5.7430 

Rb 0 0 0 

In 0.5 0.5 0.5 

Br3 0.5 0.5 0 
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We are performed for all the studied compounds. Gained optimized lattice parameters along 

with the available theoretical parameters and Wyckoff positions are collated in Table 4.1 

  

 

Figure. 4.1. Energy v/s volume optimization curves for (a) RbInCl3 and (b) RbInBr3. 
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The optimized lattice parameters for RbInX3 (X = Cl, Br) are in a close agreement given the 

theoretical values provided, confirming the accuracy of the calculations. These parameters are 

then used to compute the desired attributes of the materials being researched. As mentioned 

above in WIEN2k software, we ran volume optimization calculations for each potential to 

obtain the best theoretical lattice parameters, which are the closest to experimental value and 

gave the minimum Energy value (Figure 1). So, Energy v/s volume optimization curves are 

plotted for all compounds, and results for more responsive RbInX3 (Cl, Br) are presented in 

Figure. 1(a, b). 

The values of radius of muffin-tin (RMT) spheres for atoms were taken to be 2.5 a.u. Major, 

plane wave functions were distended up to RMT × KMAX = 8.5, where ‘RMT’ represents the 

radius of muffin-tin (MT) radius of the non-overlapping atomic sphere which is the smallest 

size neutral atoms, and ‘KMAX’ represents the largest value of the reciprocal lattice vector[33]. 

Other variables that are taken into account in the current computations are GMAX = 12.0 (a.u.) 

lmax = 10.0, 1000 k point To ensure that the computations are correct, cutoff values for energy, 

forces, and core and valence state’s separation were kept as 0.0001 Ry(Energy convergence), 

1 mRy/a.u and − 6.0 Ry, respectively. 

 

Figure 4.2: Crystal structure of RbInX3 (X=Cl, Br) 

4.2 Self Consistent Field (SCF) Calculation 

We generated the structure using the optimized lattice parameters after volume optimization, 

and then we initialized it for SCF calculation. Self-consistent field (SCF) methods include both 
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Hartree-Fock (HF) theory and Kohn-Sham (KS) density functional theory (DFT). Self-

consistent field theories only depend on those that are specific to DFT can be found in Density 

functional theory (DFT) [20]. 

We got the same Exchange- correlation potential as PBE-GGA both perovskite compound 

RbInX3 (X=Cl, Br) and GAP = 0.0 eV Where K- mesh details are 1000k. The parameters we 

used for SCF calculation are listed below in table 4.2 and results showing below the table 4.3 

after SCF calculation 

Table 4.2: Parameter used in SCF calculation of RbInX3 (X=Cl, Br) material. 

Compounds 

Optimized 

Lattice 

Parameters(Ry) 

RKmax 
K- 

point 

Convergence Citeria 

Energy(Ry)  
Charge 

(e) 

RbInCl3 5.4621 8.5 1000 0.00001  0.0001 

RbInBr3 5.7430 8.5 1000 0.00001  0.0001 

Table 4.3: Calculated Total Energy(Ry) and Fermi Energy (eV).  

 

Compounds 

Exchange 

correlation- 

potential 

    

Total Energy 

(Ry) 

 

Fermi Energy 

(eV) 

RbInCl3 PBE-GGA -20499.09189789 0.1505896542 

RbInBr3       PBE-GGA -33369.8904861 0.1334087524 

 

4.3 Bandstructure  

Band structure calculations take advantage of the periodic nature of a crystal lattice, exploiting 

it is symmetry. The bandgap is the energy difference between the lowest point of the conduction 

band and the highest point of the valance band Figure 03 (a, b) shows the Energy band structure 

using  PBE-GGA functional. From the figure, we can see there is no bandgap of 0.0 eV. In a 

metal, there is no band gap between the valance band and conduction band. The conduction 

band crosses the Fermi level and enters into the valance band. Although, in some metals, the 

conduction and valance bands partially overlap. This means that electrons can move freely 

between the conduction and valance band. In a metal, the Fermi level is inside of one or more 

allowed bands. The Fermi energy level is distinguished with a solid line at 0 eV. The top point 
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of the valance band and bottom point of the conduction band is at 0 eV in the PBE-GGA band 

structure. Since the Fermi level in metal is at absolute zero the energy of the highest occupied 

single-particle state.                                                                                        

  

Figure 4.3: Band structure plotted for (a) RbInCl3 (b) RbInBr3 

4.4 Density of state  

The density of states (DOS) is essentially the number of different states at a particular energy 

level that electrons are allowed to occupy, i.e. the number of electron states per unit volume 

per unit energy. DOS calculations allow one to determine the general distribution of states as 

a function of energy and can also determine the spacing between energy bands [41]. Also, the 

Density of state describes the probability of electron distribution in the energy spectrum. 

A DOS of zero means that no states can be occupied at that energy level. The total density of 

states (DOS) is more descriptive of the electronic nature of RbInX3 (X=Cl, Br) compounds. 

Figure 4.4 shows the calculated DOS where the latter establishes the contribution of each atom 

to DOS. From the below Figure 4.4, the conduction band overlaps the fermi level and enters 

into the valence band region. DOS contribution in the valance band region is higher than the 

conduction band. We get the higher peak of DOS in the valance band region. In RbInX3 (X=Cl, 
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Br) systems, the Cl atom contribution in the DOS is higher than the other atoms. The Rb atom 

contribution is very low in the valance band than the conduction band. 

  

 

 

Figure 4.4: Total density of states plotted for (a) RbInCl3 (b) RbInBr3 

 

4.5. Optical   Properties 

The optical properties of a material determine how it interacts with light. Some optical 

properties of RbInX3 (X=Cl, Br) will be explored in this section. We were using plasma 

frequency typically 2.8973 eV and 2.8412 eV for RbInX3 (X=Cl, Br). 

4.5.1   Absorption coefficient 

Basically, absorption coefficients are the measure of light that might be absorbed by a given 

thickness of a material. We calculate the optical absorption spectra for RbInX3(X=Cl, Br) using 

PBE functional. Figure 5 represents the absorption coefficient versus energy for PBE functional 

and indicates significant absorption in the visible energy range (0–14 eV). It was also noticed 

that the graph is showing a strange trend that is. Initially, it decreases, and then it goes to 

increase. The visible range of light is 1.8 eV to 3.4 eV. In the visible region, the absorption 

coefficient is almost zero. That means that RbInX3 (X=Cl, Br) compounds cannot be visible 

light. After the visible light region the absorptivity increases we got a sharp peak between 11.8 
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– 14 eV for RbInCl3and 10.8 – 14 eV for RbInBr3. Here is the result we can see that two lines 

one is for RbInCl3 and RbInBr3. This material acts as a good absorber. 

 

Figure 4.5: Absorption coefficient for RbInX3 (X=Cl, Br)  

4.5.2   Optical   conductivity 

Optical conductivity is a very important property to measure the electronic states of a material. 

It is closely related to dielectric function. It depends upon optical band gap, refractive index, 

absorption coefficient, incident photon frequency, extinction coefficient. Figure 6 shows the 

optical conductivity at different energy. The optical conductivity is the extension of electrical 

transport to high frequency. The maximum value of optical conductivity of the compound is 

obtained at 11.8 eV for RbInCl3 and another direction for RbInBr3 displays the maximum value 

of optical conductivity of the compound is obtained at 10.8 eV. Both plot shows, initially 

optical conductivity is almost zero. As light energy approached, it started to increase and 

maximum optical conductivity was noticed that both compounds. After reaching this stage it 

again decreases.      
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Figure 4.6: Optical conductivity for RbInX3 (Cl, Br). 

4.5.3   Refractive   index  

Refractive index is the measurement of how light propagates through a material. Higher the 

refractive index, slower will light travels through the material that changes its direction. It is 

very essential optical constant and plays an important role in designing the optical device. The 

refractive index versus the incident photon energy is shown in Figure 07. It should be noted 

that the refractive index is directly proportional to the magnetic moment of the system, which 

shows the dependency of the refractive index to their magnetic properties of them. We observe 

the optically isotropic nature of this compound in the lower energy range. For lower energies, 

the refractive index value is almost constant and as the energy increases, it attains a maximum 

value and exhibits decreasing tendency for higher energy values. The static refractive index is 

found to have the value typically 30 for RbInCl3 and zero for RbInBr3. 

The refractive index is greater than one because as photons enter a material they are slowed 

down by the interaction with electrons. The more photons are slowed down while traveling 

through a material, the greater the material's refractive index. Generally, any mechanism that 

increases electron density in material also increases the refractive index 
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Figure 4.7: Refractive index for RbInX3 (X=Cl, Br)  

 4.5.4:  Optical   Reflectivity 

Reflectivity is an optical property of material, which describes how much light is reflected from 

the material with an amount of light incident on the material. The optical reflectivity R (ω) is 

displayed in Fig 08 we see that at zero position energy the reflectivity is highest but after 0 eV 

position reflectivity starts to decrease and becomes zero at the 1.9 eV and 2 eV respectively. 

After both positions, the reflectivity again increases. As the energy increases the reflectivity 

also increases. In both property observations, we can say that RbInCl3 and RbInbr3 are good 

metallic reflectors. 
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Figure 4.8: Optical reflectivity for RbInX3 (X=Cl, Br)  

4.5.5   Dielectric Tensor 

The optical properties of the perovskites can be described by the electronic dielectric function 

𝜀(𝜔). The most relevant frequency-dependent complex dielectric function ε(ω) is studied to 

explore the optical impedance of the medium during the electromagnetic interaction. The 

dielectric function ε(𝜔) describes the optical response of the medium to the incident photons 

with an energy E = ħ𝜔. In terms of the complex dielectric function ε(ω), the dielectric function 

of an anisotropic material can be expressed as; 

ε(ω) = ε1(ω) + iε2(ω) 

where ε1(ω) and iε2(ω) are the real and imaginary components of the dielectric function, 

respectively [42]. It's worth noting that the real and imaginary components of ε(ω) correspond 

to the quantity of energy stored in any medium and the amount of energy lost during solar 

absorption, respectively. Fig09 represents the real ε1(ω) and the imaginary ε2(ω) parts of the 

dielectric function, which depends on the frequency, for RbInX3 (Cl, Br). 
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Figure 4.9: Dielectric tensor for RbInX3 (X=Cl, Br)  (a) Real and (b) Imaginary 

 The imaginary part of the dielectric function indicates absorption limits of the materials and 

energy gain ability as solar cells. The real part indicates the energy store ability of the material. 

Let us divide the curve into two main regions: a low energy region and a high energy region.  

From the real part of dielectric function ε1(ω), the dielectric constant values can be found for 

any frequency. From fig 09 real part both compounds and the imaginary part both compounds 

obtained from PBE-GGA potential give the same graph. Real and imaginary parts of the 

dielectric constant are displayed in Figures 9 a and b for the RbInX3 (X=Cl, Br)   compound. 

The value of the static real part of the dielectric function ε1(ω) for the RbInX3 (X=Cl, Br) 

compound Figure 9a is negative, while the imaginary part of the static dielectric function ε2(ω) 

Figure 9b is positive; this implies two important facts: Firstly, the RbInX3 (X=Cl, Br)  

compound has considerable metallic behavior, which agrees with the energy band structure 

calculations. Secondly, the negative value of (ε1) especially in the energy range 0–1.15 eV in 

Figure 9a, and the highly positive value of ε2(ω) at the early beginning of Figure 9b, reveal the 

loss of light transit. 

4.6   Elastic Properties 

The mechanical characteristics of RbInX3 (Cl, Br) are investigated using elastic constant 

calculations. The nature of the bonding forces and mechanical stabilities is influenced by elastic 

constants. Elastic constants are fundamental properties of solid materials. The propagation of 
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an elastic wave through a medium depends on the elastic constants of that material. From the 

strain as a function of volume, the elastic constants C11, C12 were determined. The IRelast 

package, as implemented in WIEN2k, is used to examine elastic constant in this report.  The 

following are the born stability conditions for cubic crystal [43-45]. Born stability criteria for 

cubic crystals are given as [46, 47]. 

(C11-C12) > 0, C11>0, C44>0, (C11 + 2C12)>0 

The estimated elastic constants satisfy the Born stability criterion, and these elastic constants 

are listed in table 4. C11 represent in X-direction under linear compression [48]. For both 

studied compounds, the value of C12 is negative, which shows the decrease in transverse 

expansion when stress is applied. From elastic constants (C11, C12), we can easily calculate the 

elastic moduli, bulk modulus (B), by using Voigt-Reuss-Hill approximation [49]. 

B = 
1

3
 (𝐶11 + 2𝐶12)                                          4.6.1 

Bulk modulus calculates the resistance to volume changes under pressure [50] and can easily 

be calculated from Equation (4.6.1) by using elastic constants. Calculate elastic constant, C11 

and C12 ( in GPa) are 54.2803, 14.9489 respectively. Also, calculate the value of the bulk 

modulus of 28.059 GPa.  
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                                                       Chapter 05 

 

Conclusions 

 

The various properties of RbInX3 (X= Cl, Br) compounds were studied. In this work, we have 

studied the structural, elastic, electronic, and optical properties of the cubic perovskite using 

the utmost precise full-potential linearized augmented plane wave (FP-LAPW) method as 

embodied in WIEN2k code within the generalized gradient approximation (GGA) in the 

framework of density functional theory (DFT). From band structure calculation, it is found that 

both compounds exhibit metallic behavior with no bandgap structure. The optical properties 

such as real and imaginary dielectric function, reflectivity, absorption coefficient, the real part 

of optical conductivity, refractive index are studied in the energy range of 0 to14 eV. The elastic 

properties have been investigated, which followed the Born stability criteria. Several 

mechanical properties, like Bulk modulus, Young’s modulus, shear modulus, and anisotropy 

factor were computed by using the values of Cij. The elastic constants (C11, C12), bulk modulus 

are also calculated and discussed.   The material RbInCl3 showed the value of bulk modulus of 

28.059 GPa. 
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